Introduce create_static_model_set() everywhere

This commit is contained in:
henryruhs 2024-11-20 19:27:59 +01:00
parent ab34dbb991
commit cb51775d99
17 changed files with 323 additions and 255 deletions

View File

@ -11,7 +11,14 @@ from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import Fps, InferencePool, ModelOptions, ModelSet, VisionFrame
from facefusion.vision import count_video_frame_total, detect_video_fps, get_video_frame, read_image
MODEL_SET : ModelSet =\
PROBABILITY_LIMIT = 0.80
RATE_LIMIT = 10
STREAM_COUNTER = 0
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'open_nsfw':
{
@ -35,9 +42,6 @@ MODEL_SET : ModelSet =\
'mean': [ 104, 117, 123 ]
}
}
PROBABILITY_LIMIT = 0.80
RATE_LIMIT = 10
STREAM_COUNTER = 0
def get_inference_pool() -> InferencePool:
@ -50,7 +54,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
return MODEL_SET.get('open_nsfw')
return create_static_model_set().get('open_nsfw')
def pre_check() -> bool:

View File

@ -157,6 +157,25 @@ def conditional_append_reference_faces() -> None:
append_reference_face(processor_module.__name__, abstract_reference_face)
def clear_model_sets() -> None:
available_processors = list_directory('facefusion/processors/modules')
common_modules =\
[
content_analyser,
face_classifier,
face_detector,
face_landmarker,
face_recognizer,
face_masker,
voice_extractor
]
processor_modules = get_processors_modules(available_processors)
for module in common_modules + processor_modules:
if hasattr(module, 'create_static_model_set'):
module.create_static_model_set.cache_clear()
def force_download() -> ErrorCode:
available_processors = list_directory('facefusion/processors/modules')
common_modules =\

View File

@ -1,3 +1,4 @@
from functools import lru_cache
from typing import List, Tuple
import numpy
@ -9,7 +10,10 @@ from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import Age, FaceLandmark5, Gender, InferencePool, ModelOptions, ModelSet, Race, VisionFrame
MODEL_SET : ModelSet =\
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'fairface':
{
@ -47,7 +51,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
return MODEL_SET.get('fairface')
return create_static_model_set().get('fairface')
def pre_check() -> bool:

View File

@ -2,6 +2,7 @@ from typing import List, Tuple
import cv2
import numpy
from charset_normalizer.md import lru_cache
from facefusion import inference_manager, state_manager
from facefusion.download import conditional_download_hashes, conditional_download_sources
@ -11,7 +12,10 @@ from facefusion.thread_helper import thread_semaphore
from facefusion.typing import Angle, BoundingBox, Detection, DownloadSet, FaceLandmark5, InferencePool, ModelSet, Score, VisionFrame
from facefusion.vision import resize_frame_resolution, unpack_resolution
MODEL_SET : ModelSet =\
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'retinaface':
{
@ -87,16 +91,17 @@ def clear_inference_pool() -> None:
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
model_hashes = {}
model_sources = {}
model_set = create_static_model_set()
if state_manager.get_item('face_detector_model') in [ 'many', 'retinaface' ]:
model_hashes['retinaface'] = MODEL_SET.get('retinaface').get('hashes').get('retinaface')
model_sources['retinaface'] = MODEL_SET.get('retinaface').get('sources').get('retinaface')
model_hashes['retinaface'] = model_set.get('retinaface').get('hashes').get('retinaface')
model_sources['retinaface'] = model_set.get('retinaface').get('sources').get('retinaface')
if state_manager.get_item('face_detector_model') in [ 'many', 'scrfd' ]:
model_hashes['scrfd'] = MODEL_SET.get('scrfd').get('hashes').get('scrfd')
model_sources['scrfd'] = MODEL_SET.get('scrfd').get('sources').get('scrfd')
model_hashes['scrfd'] = model_set.get('scrfd').get('hashes').get('scrfd')
model_sources['scrfd'] = model_set.get('scrfd').get('sources').get('scrfd')
if state_manager.get_item('face_detector_model') in [ 'many', 'yoloface' ]:
model_hashes['yoloface'] = MODEL_SET.get('yoloface').get('hashes').get('yoloface')
model_sources['yoloface'] = MODEL_SET.get('yoloface').get('sources').get('yoloface')
model_hashes['yoloface'] = model_set.get('yoloface').get('hashes').get('yoloface')
model_sources['yoloface'] = model_set.get('yoloface').get('sources').get('yoloface')
return model_hashes, model_sources

View File

@ -1,3 +1,4 @@
from functools import lru_cache
from typing import Tuple
import cv2
@ -10,7 +11,10 @@ from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import Angle, BoundingBox, DownloadSet, FaceLandmark5, FaceLandmark68, InferencePool, ModelSet, Prediction, Score, VisionFrame
MODEL_SET : ModelSet =\
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'2dfan4':
{
@ -86,21 +90,22 @@ def clear_inference_pool() -> None:
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
model_set = create_static_model_set()
model_hashes =\
{
'fan_68_5': MODEL_SET.get('fan_68_5').get('hashes').get('fan_68_5')
'fan_68_5': model_set.get('fan_68_5').get('hashes').get('fan_68_5')
}
model_sources =\
{
'fan_68_5': MODEL_SET.get('fan_68_5').get('sources').get('fan_68_5')
'fan_68_5': model_set.get('fan_68_5').get('sources').get('fan_68_5')
}
if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]:
model_hashes['2dfan4'] = MODEL_SET.get('2dfan4').get('hashes').get('2dfan4')
model_sources['2dfan4'] = MODEL_SET.get('2dfan4').get('sources').get('2dfan4')
model_hashes['2dfan4'] = model_set.get('2dfan4').get('hashes').get('2dfan4')
model_sources['2dfan4'] = model_set.get('2dfan4').get('sources').get('2dfan4')
if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]:
model_hashes['peppa_wutz'] = MODEL_SET.get('peppa_wutz').get('hashes').get('peppa_wutz')
model_sources['peppa_wutz'] = MODEL_SET.get('peppa_wutz').get('sources').get('peppa_wutz')
model_hashes['peppa_wutz'] = model_set.get('peppa_wutz').get('hashes').get('peppa_wutz')
model_sources['peppa_wutz'] = model_set.get('peppa_wutz').get('sources').get('peppa_wutz')
return model_hashes, model_sources
@ -127,7 +132,7 @@ def detect_face_landmarks(vision_frame : VisionFrame, bounding_box : BoundingBox
def detect_with_2dfan4(temp_vision_frame: VisionFrame, bounding_box: BoundingBox, face_angle: Angle) -> Tuple[FaceLandmark68, Score]:
model_size = MODEL_SET.get('2dfan4').get('size')
model_size = create_static_model_set().get('2dfan4').get('size')
scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None)
translation = (model_size[0] - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5
rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, model_size)
@ -146,7 +151,7 @@ def detect_with_2dfan4(temp_vision_frame: VisionFrame, bounding_box: BoundingBox
def detect_with_peppa_wutz(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]:
model_size = MODEL_SET.get('peppa_wutz').get('size')
model_size = create_static_model_set().get('peppa_wutz').get('size')
scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None)
translation = (model_size[0] - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5
rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, model_size)

View File

@ -11,7 +11,24 @@ from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import DownloadSet, FaceLandmark68, FaceMaskRegion, InferencePool, Mask, ModelSet, Padding, VisionFrame
MODEL_SET : ModelSet =\
FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\
{
'skin': 1,
'left-eyebrow': 2,
'right-eyebrow': 3,
'left-eye': 4,
'right-eye': 5,
'glasses': 6,
'nose': 10,
'mouth': 11,
'upper-lip': 12,
'lower-lip': 13
}
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'face_occluder':
{
@ -54,19 +71,6 @@ MODEL_SET : ModelSet =\
'size': (512, 512)
}
}
FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\
{
'skin': 1,
'left-eyebrow': 2,
'right-eyebrow': 3,
'left-eye': 4,
'right-eye': 5,
'glasses': 6,
'nose': 10,
'mouth': 11,
'upper-lip': 12,
'lower-lip': 13
}
def get_inference_pool() -> InferencePool:
@ -79,15 +83,16 @@ def clear_inference_pool() -> None:
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
model_set = create_static_model_set()
model_hashes =\
{
'face_occluder': MODEL_SET.get('face_occluder').get('hashes').get('face_occluder'),
'face_parser': MODEL_SET.get('face_parser').get('hashes').get('face_parser')
'face_occluder': model_set.get('face_occluder').get('hashes').get('face_occluder'),
'face_parser': model_set.get('face_parser').get('hashes').get('face_parser')
}
model_sources =\
{
'face_occluder': MODEL_SET.get('face_occluder').get('sources').get('face_occluder'),
'face_parser': MODEL_SET.get('face_parser').get('sources').get('face_parser')
'face_occluder': model_set.get('face_occluder').get('sources').get('face_occluder'),
'face_parser': model_set.get('face_parser').get('sources').get('face_parser')
}
return model_hashes, model_sources
@ -113,7 +118,7 @@ def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_p
def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
model_size = MODEL_SET.get('face_occluder').get('size')
model_size = create_static_model_set().get('face_occluder').get('size')
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255
prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3)
@ -125,7 +130,7 @@ def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
model_size = MODEL_SET.get('face_parser').get('size')
model_size = create_static_model_set().get('face_parser').get('size')
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
prepare_vision_frame = prepare_vision_frame[:, :, ::-1].astype(numpy.float32) / 255
prepare_vision_frame = numpy.subtract(prepare_vision_frame, numpy.array([ 0.485, 0.456, 0.406 ]).astype(numpy.float32))

View File

@ -1,3 +1,4 @@
from functools import lru_cache
from typing import Tuple
import numpy
@ -9,7 +10,10 @@ from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import Embedding, FaceLandmark5, InferencePool, ModelOptions, ModelSet, VisionFrame
MODEL_SET : ModelSet =\
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'arcface':
{
@ -45,7 +49,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
return MODEL_SET.get('arcface')
return create_static_model_set().get('arcface')
def pre_check() -> bool:

View File

@ -1,4 +1,5 @@
from argparse import ArgumentParser
from functools import lru_cache
from typing import List
import cv2
@ -24,7 +25,8 @@ from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, ModelOp
from facefusion.vision import match_frame_color, read_image, read_static_image, write_image
def create_model_set() -> ModelSet:
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'styleganex_age':
@ -73,7 +75,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
age_modifier_model = state_manager.get_item('age_modifier_model')
return create_model_set().get(age_modifier_model)
return create_static_model_set().get(age_modifier_model)
def register_args(program : ArgumentParser) -> None:

View File

@ -1,4 +1,5 @@
from argparse import ArgumentParser
from functools import lru_cache
from typing import List, Tuple
import cv2
@ -24,7 +25,8 @@ from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, Mask, M
from facefusion.vision import conditional_match_frame_color, read_image, read_static_image, write_image
def create_model_set() -> ModelSet:
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
model_config =\
[
('druuzil', 'adrianne_palicki_384', (384, 384)),
@ -217,7 +219,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
deep_swapper_model = state_manager.get_item('deep_swapper_model')
return create_model_set().get(deep_swapper_model)
return create_static_model_set().get(deep_swapper_model)
def register_args(program : ArgumentParser) -> None:

View File

@ -1,4 +1,5 @@
from argparse import ArgumentParser
from functools import lru_cache
from typing import List, Tuple
import cv2
@ -26,7 +27,8 @@ from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, ModelOp
from facefusion.vision import get_video_frame, read_image, read_static_image, write_image
def create_model_set() -> ModelSet:
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'live_portrait':
@ -85,7 +87,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
expression_restorer_model = state_manager.get_item('expression_restorer_model')
return create_model_set().get(expression_restorer_model)
return create_static_model_set().get(expression_restorer_model)
def register_args(program : ArgumentParser) -> None:

View File

@ -1,4 +1,5 @@
from argparse import ArgumentParser
from functools import lru_cache
from typing import List, Tuple
import cv2
@ -25,7 +26,8 @@ from facefusion.typing import ApplyStateItem, Args, Face, FaceLandmark68, Infere
from facefusion.vision import read_image, read_static_image, write_image
def create_model_set() -> ModelSet:
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'live_portrait':
@ -115,7 +117,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
face_editor_model = state_manager.get_item('face_editor_model')
return create_model_set().get(face_editor_model)
return create_static_model_set().get(face_editor_model)
def register_args(program : ArgumentParser) -> None:

View File

@ -1,4 +1,5 @@
from argparse import ArgumentParser
from functools import lru_cache
from typing import List
import cv2
@ -24,7 +25,8 @@ from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, ModelOp
from facefusion.vision import read_image, read_static_image, write_image
def create_model_set() -> ModelSet:
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'codeformer':
@ -232,7 +234,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
face_enhancer_model = state_manager.get_item('face_enhancer_model')
return create_model_set().get(face_enhancer_model)
return create_static_model_set().get(face_enhancer_model)
def register_args(program : ArgumentParser) -> None:

View File

@ -1,4 +1,5 @@
from argparse import ArgumentParser
from functools import lru_cache
from typing import List
import cv2
@ -19,7 +20,8 @@ from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, ModelOp
from facefusion.vision import read_image, read_static_image, unpack_resolution, write_image
def create_model_set() -> ModelSet:
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'ddcolor':
@ -138,7 +140,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
frame_colorizer_model = state_manager.get_item('frame_colorizer_model')
return create_model_set().get(frame_colorizer_model)
return create_static_model_set().get(frame_colorizer_model)
def register_args(program : ArgumentParser) -> None:

View File

@ -1,4 +1,5 @@
from argparse import ArgumentParser
from functools import lru_cache
from typing import List
import cv2
@ -19,7 +20,8 @@ from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, ModelOp
from facefusion.vision import create_tile_frames, merge_tile_frames, read_image, read_static_image, write_image
def create_model_set() -> ModelSet:
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'clear_reality_x4':
@ -395,7 +397,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
frame_enhancer_model = state_manager.get_item('frame_enhancer_model')
return create_model_set().get(frame_enhancer_model)
return create_static_model_set().get(frame_enhancer_model)
def register_args(program : ArgumentParser) -> None:

View File

@ -1,4 +1,5 @@
from argparse import ArgumentParser
from functools import lru_cache
from typing import List
import cv2
@ -25,7 +26,8 @@ from facefusion.typing import ApplyStateItem, Args, AudioFrame, Face, InferenceP
from facefusion.vision import read_image, read_static_image, restrict_video_fps, write_image
def create_model_set() -> ModelSet:
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'wav2lip_96':
@ -84,7 +86,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
lip_syncer_model = state_manager.get_item('lip_syncer_model')
return create_model_set().get(lip_syncer_model)
return create_static_model_set().get(lip_syncer_model)
def register_args(program : ArgumentParser) -> None:

View File

@ -4,6 +4,7 @@ import gradio
from facefusion import state_manager, wording
from facefusion.choices import download_provider_set
from facefusion.core import clear_model_sets
from facefusion.typing import DownloadProviderKey
DOWNLOAD_PROVIDERS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
@ -24,6 +25,7 @@ def listen() -> None:
def update_download_providers(download_providers : List[DownloadProviderKey]) -> gradio.CheckboxGroup:
clear_model_sets()
download_providers = download_providers or list(download_provider_set.keys())
state_manager.set_item('download_providers', download_providers)
return gradio.CheckboxGroup(value = state_manager.get_item('download_providers'))

View File

@ -1,3 +1,4 @@
from functools import lru_cache
from typing import Tuple
import numpy
@ -9,7 +10,10 @@ from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import thread_semaphore
from facefusion.typing import Audio, AudioChunk, InferencePool, ModelOptions, ModelSet
MODEL_SET : ModelSet =\
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
return\
{
'kim_vocal_2':
{
@ -43,7 +47,7 @@ def clear_inference_pool() -> None:
def get_model_options() -> ModelOptions:
return MODEL_SET.get('kim_vocal_2')
return create_static_model_set().get('kim_vocal_2')
def pre_check() -> bool: