Compare commits

..

4 Commits

Author SHA1 Message Date
henryruhs
d14a75c223 Remove ENV 2024-12-27 15:27:58 +01:00
henryruhs
a55e0085f7 Get rid of InvalidPathError 2024-12-27 14:24:43 +01:00
henryruhs
91e4616fe1 Hotfix empty urls 2024-12-24 16:40:37 +01:00
Henry Ruhs
7a09479fb5
3.1.0 (#839)
* Replace audio whenever set via source

* add H264_qsv&HEVC_qsv (#768)

* Update ffmpeg.py

* Update choices.py

* Update typing.py

* Fix spaces and newlines

* Fix return type

* Introduce hififace swapper

* Disable stream for expression restorer

* Webcam polishing part1 (#796)

* Cosmetics on ignore comments

* Testing for replace audio

* Testing for restore audio

* Testing for restore audio

* Fix replace_audio()

* Remove shortest and use fixed video duration

* Remove shortest and use fixed video duration

* Prevent duplicate entries to local PATH

* Do hard exit on invalid args

* Need for Python 3.10

* Fix state of face selector

* Fix OpenVINO by aliasing GPU.0 to GPU

* Fix OpenVINO by aliasing GPU.0 to GPU

* Fix/age modifier styleganex 512 (#798)

* fix

* styleganex template

* changes

* changes

* fix occlusion mask

* add age modifier scale

* change

* change

* hardcode

* Cleanup

* Use model_sizes and model_templates variables

* No need for prepare when just 2 lines of code

* Someone used spaces over tabs

* Revert back [0][0]

---------

Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com>

* Feat/update gradio5 (#799)

* Update to Gradio 5

* Remove overrides for Gradio

* Fix dark mode for Gradio

* Polish errors

* More styles for tabs and co

* Make slider inputs and reset like a unit

* Make slider inputs and reset like a unit

* Adjust naming

* Improved color matching (#800)

* aura fix

* fix import

* move to vision.py

* changes

* changes

* changes

* changes

* further reduction

* add test

* better test

* change name

* Minor cleanup

* Minor cleanup

* Minor cleanup

* changes (#801)

* Switch to official assets repo

* Add __pycache__ to gitignore

* Gradio pinned python-multipart to 0.0.12

* Update dependencies

* Feat/temp path second try (#802)

* Terminate base directory from temp helper

* Partial adjust program codebase

* Move arguments around

* Make `-j` absolete

* Resolve args

* Fix job register keys

* Adjust date test

* Finalize temp path

* Update onnxruntime

* Update dependencies

* Adjust color for checkboxes

* Revert due terrible performance

* Fix/enforce vp9 for webm (#805)

* Simple fix to enforce vp9 for webm

* Remove suggest methods from program helper

* Cleanup ffmpeg.py a bit

* Update onnxruntime (second try)

* Update onnxruntime (second try)

* Remove cudnn_conv_algo_search tweaks

* Remove cudnn_conv_algo_search tweaks

* changes

* add both mask instead of multiply

* adaptive color correction

* changes

* remove model size requirement

* changes

* add to facefusion.ini

* changes

* changes

* changes

* Add namespace for dfm creators

* Release five frame enhancer models

* Remove vendor from model name

* Remove vendor from model name

* changes

* changes

* changes

* changes

* Feat/download providers (#809)

* Introduce download providers

* update processors download method

* add ui

* Fix CI

* Adjust UI component order, Use download resolver for benchmark

* Remove is_download_done()

* Introduce download provider set, Remove choices method from execution, cast all dict keys() via list()

* Fix spacing

---------

Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com>

* Fix model paths for 3.1.0

* Introduce bulk-run (#810)

* Introduce bulk-run

* Make bulk run bullet proof

* Integration test for bulk-run

* new alignment

* Add safer global named resolve_file_pattern() (#811)

* Allow bulk runner with target pattern only

* changes

* changes

* Update Python to 3.12 for CI (#813)

* changes

* Improve NVIDIA device lookups

* Rename template key to deepfacelive

* Fix name

* Improve resolve download

* Rename bulk-run to batch-run

* Make deep swapper inputs universal

* Add more deepfacelive models

* Use different morph value

* Feat/simplify hashes sources download (#814)

* Extract download directory path from assets path

* Fix lint

* Fix force-download command, Fix urls in frame enhancer

* changes

* fix warp_face_by_bounding_box dtype error

* DFM Morph (#816)

* changes

* Improve wording, Replace [None], SideQuest: clean forward() of age modifier

* SideQuest: clean forward() of face enhancer

---------

Co-authored-by: henryruhs <info@henryruhs.com>

* Fix preview refresh after slide

* Add more deepfacelive models (#817)

* Add more deepfacelive models

* Add more deepfacelive models

* Fix deep swapper sizes

* Kill accent colors, Number input styles for Chrome

* Simplify thumbnail-item looks

* Fix first black screen

* Introduce model helper

* ci.yml: Add macOS on ARM64 to the testing (#818)

* ci.yml: Add macOS on ARM64 to the testing

* ci.yml: uses: AnimMouse/setup-ffmpeg@v1

* ci.yml: strategy: matrix: os: macos-latest,

* - name: Set up FFmpeg

* Update .github/workflows/ci.yml

* Update ci.yml

---------

Co-authored-by: Henry Ruhs <info@henryruhs.com>

* Show/hide morph slider for deep swapper (#822)

* remove dfl_head and update dfl_whole_face template

* Add deep swapper models by Mats

* Add deep swapper models by Druuzil

* Add deep swapper models by Rumateus

* Implement face enhancer weight for codeformer, Side Quest: has proces… (#823)

* Implement face enhancer weight for codeformer, Side Quest: has processor checks

* Fix typo

* Fix face enhancer blend in UI

* Use static model set creation

* Add deep swapper models by Jen

* Introduce create_static_model_set() everywhere (#824)

* Move clear over to the UI (#825)

* Fix model key

* Undo restore_audio()

* Switch to latest XSeg

* Switch to latest XSeg

* Switch to latest XSeg

* Use resolve_download_url() everywhere, Vanish --skip-download flag

* Fix resolve_download_url

* Fix space

* Kill resolve_execution_provider_keys() and move fallbacks where they belong

* Kill resolve_execution_provider_keys() and move fallbacks where they belong

* Remove as this does not work

* Change TempFrameFormat order

* Fix CoreML partially

* Remove duplicates (Rumateus is the creator)

* Add deep swapper models by Edel

* Introduce download scopes (#826)

* Introduce download scopes

* Limit download scopes to force-download command

* Change source-paths behaviour

* Fix space

* Update README

* Rename create_log_level_program to create_misc_program

* Fix wording

* Fix wording

* Update dependencies

* Use tolerant for video_memory_strategy in benchmark

* Feat/ffmpeg with progress (#827)

* FFmpeg with progress bar

* Fix typing

* FFmpeg with progress bar part2

* Restore streaming wording

* Change order in choices and typing

* Introduce File using list_directory() (#830)

* Feat/local deep swapper models (#832)

* Local model support for deep swapper

* Local model support for deep swapper part2

* Local model support for deep swapper part3

* Update yet another dfm by Druuzil

* Refactor/choices and naming (#833)

* Refactor choices, imports and naming

* Refactor choices, imports and naming

* Fix styles for tabs, Restore toast

* Update yet another dfm by Druuzil

* Feat/face masker models (#834)

* Introduce face masker models

* Introduce face masker models

* Introduce face masker models

* Register needed step keys

* Provide different XSeg models

* Simplify model context

* Fix out of range for trim frame, Fix ffmpeg extraction count (#836)

* Fix out of range for trim frame, Fix ffmpeg extraction count

* Move restrict of trim frame to the core, Make sure all values are within the range

* Fix and merge testing

* Fix typing

* Add region mask for deep swapper

* Adjust wording

* Move FACE_MASK_REGIONS to choices

* Update dependencies

* Feat/download provider fallback (#837)

* Introduce download providers fallback, Use CURL everywhre

* Fix CI

* Use readlines() over readline() to avoid while

* Use readlines() over readline() to avoid while

* Use readlines() over readline() to avoid while

* Use communicate() over wait()

* Minor updates for testing

* Stop webcam on source image change

* Feat/webcam improvements (#838)

* Detect available webcams

* Fix CI, Move webcam id dropdown to the sidebar, Disable warnings

* Fix CI

* Remove signal on hard_exit() to prevent exceptions

* Fix border color in toast timer

* Prepare release

* Update preview

* Update preview

* Hotfix progress bar

---------

Co-authored-by: DDXDB <38449595+DDXDB@users.noreply.github.com>
Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com>
Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2024-12-24 12:46:56 +01:00
56 changed files with 782 additions and 1090 deletions

BIN
.github/preview.png vendored

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 MiB

After

Width:  |  Height:  |  Size: 1.3 MiB

View File

@ -32,6 +32,8 @@ reference_face_distance =
reference_frame_number =
[face_masker]
face_occluder_model =
face_parser_model =
face_mask_types =
face_mask_blur =
face_mask_padding =

View File

@ -1,72 +0,0 @@
from typing import Optional
import cv2
import numpy
from facefusion import core, state_manager
from facefusion.audio import create_empty_audio_frame, get_audio_frame
from facefusion.common_helper import get_first
from facefusion.content_analyser import analyse_frame
from facefusion.face_analyser import get_average_face, get_many_faces
from facefusion.face_selector import sort_faces_by_order
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import filter_audio_paths, is_image, is_video
from facefusion.processors.core import get_processors_modules
from facefusion.typing import AudioFrame, Face, FaceSet, VisionFrame
from facefusion.vision import get_video_frame, read_static_image, read_static_images, resize_frame_resolution
def process_frame(frame_number : int = 0) -> Optional[VisionFrame]:
core.conditional_append_reference_faces()
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
source_frames = read_static_images(state_manager.get_item('source_paths'))
source_faces = []
for source_frame in source_frames:
temp_faces = get_many_faces([ source_frame ])
temp_faces = sort_faces_by_order(temp_faces, 'large-small')
if temp_faces:
source_faces.append(get_first(temp_faces))
source_face = get_average_face(source_faces)
source_audio_path = get_first(filter_audio_paths(state_manager.get_item('source_paths')))
source_audio_frame = create_empty_audio_frame()
if source_audio_path and state_manager.get_item('output_video_fps') and state_manager.get_item('reference_frame_number'):
reference_audio_frame_number = state_manager.get_item('reference_frame_number')
if state_manager.get_item('trim_frame_start'):
reference_audio_frame_number -= state_manager.get_item('trim_frame_start')
temp_audio_frame = get_audio_frame(source_audio_path, state_manager.get_item('output_video_fps'), reference_audio_frame_number)
if numpy.any(temp_audio_frame):
source_audio_frame = temp_audio_frame
if is_image(state_manager.get_item('target_path')):
target_vision_frame = read_static_image(state_manager.get_item('target_path'))
preview_vision_frame = process_preview_frame(reference_faces, source_face, source_audio_frame, target_vision_frame)
return preview_vision_frame
if is_video(state_manager.get_item('target_path')):
temp_vision_frame = get_video_frame(state_manager.get_item('target_path'), frame_number)
preview_vision_frame = process_preview_frame(reference_faces, source_face, source_audio_frame, temp_vision_frame)
return preview_vision_frame
return None
def process_preview_frame(reference_faces : FaceSet, source_face : Face, source_audio_frame : AudioFrame, target_vision_frame : VisionFrame) -> VisionFrame:
target_vision_frame = resize_frame_resolution(target_vision_frame, (1024, 1024))
source_vision_frame = target_vision_frame.copy()
if analyse_frame(target_vision_frame):
return cv2.GaussianBlur(target_vision_frame, (99, 99), 0)
for processor_module in get_processors_modules(state_manager.get_item('processors')):
if processor_module.pre_process('preview'):
target_vision_frame = processor_module.process_frame(
{
'reference_faces': reference_faces,
'source_face': source_face,
'source_audio_frame': source_audio_frame,
'source_vision_frame': source_vision_frame,
'target_vision_frame': target_vision_frame
})
return target_vision_frame

View File

@ -1,121 +0,0 @@
import asyncio
import json
from typing import Any, List
import cv2
import uvicorn
from litestar import Litestar, WebSocket, get as read, websocket as stream, websocket_listener
from litestar.static_files import create_static_files_router
from facefusion import _preview, choices, execution, state_manager, vision
from facefusion.processors import choices as processors_choices
from facefusion.state_manager import get_state
from facefusion.typing import ExecutionDevice
@read('/choices')
async def read_choices() -> Any:
__choices__ = {}
for key in dir(choices):
if not key.startswith('__'):
value = getattr(choices, key)
if isinstance(value, (dict, list)):
__choices__[key] = value
return __choices__
@read('/processors/choices')
async def read_processors_choices() -> Any:
__processors_choices__ = {}
for key in dir(processors_choices):
if not key.startswith('__'):
value = getattr(processors_choices, key)
if isinstance(value, (dict, list)):
__processors_choices__[key] = value
return __processors_choices__
@read('/execution/providers')
async def read_execution_providers() -> Any:
return execution.get_execution_provider_set()
@stream('/execution/devices')
async def stream_execution_devices(socket : WebSocket[Any, Any, Any]) -> None:
await socket.accept()
while True:
await socket.send_json(execution.detect_execution_devices())
await asyncio.sleep(0.5)
@read('/execution/devices')
async def read_execution_devices() -> List[ExecutionDevice]:
return execution.detect_execution_devices()
@read('/static_execution/devices')
async def read_static_execution_devices() -> List[ExecutionDevice]:
return execution.detect_static_execution_devices()
@stream('/state')
async def stream_state(socket : WebSocket[Any, Any, Any]) -> None:
await socket.accept()
while True:
await socket.send_json(get_state())
await asyncio.sleep(0.5)
@read('/preview', media_type = 'image/png', mode = "binary")
async def read_preview(frame_number : int) -> bytes:
_, preview_vision_frame = cv2.imencode('.png', _preview.process_frame(frame_number)) #type:ignore
return preview_vision_frame.tobytes()
@websocket_listener("/preview", send_mode = "binary")
async def stream_preview(data : str) -> bytes:
frame_number = int(json.loads(data).get('frame_number'))
_, preview_vision_frame = cv2.imencode('.png', _preview.process_frame(frame_number)) #type:ignore
return preview_vision_frame.tobytes()
@read('/ui/preview_slider')
async def read_ui_preview_slider() -> Any:
target_path = state_manager.get_item('target_path')
video_frame_total = vision.count_video_frame_total(target_path)
return\
{
'video_frame_total': video_frame_total
}
api = Litestar(
[
read_choices,
read_processors_choices,
stream_execution_devices,
read_execution_devices,
read_static_execution_devices,
stream_state,
read_preview,
read_ui_preview_slider,
stream_preview,
create_static_files_router(
path = '/frontend',
directories = [ 'facefusion/static' ],
html_mode = True,
)
])
def run() -> None:
uvicorn.run(api)

View File

@ -71,6 +71,8 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
apply_state_item('reference_face_distance', args.get('reference_face_distance'))
apply_state_item('reference_frame_number', args.get('reference_frame_number'))
# face masker
apply_state_item('face_occluder_model', args.get('face_occluder_model'))
apply_state_item('face_parser_model', args.get('face_parser_model'))
apply_state_item('face_mask_types', args.get('face_mask_types'))
apply_state_item('face_mask_blur', args.get('face_mask_blur'))
apply_state_item('face_mask_padding', normalize_padding(args.get('face_mask_padding')))
@ -105,7 +107,7 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
apply_state_item('output_video_fps', output_video_fps)
apply_state_item('skip_audio', args.get('skip_audio'))
# processors
available_processors = list_directory('facefusion/processors/modules')
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
apply_state_item('processors', args.get('processors'))
for processor_module in get_processors_modules(available_processors):
processor_module.apply_args(args, apply_state_item)

View File

@ -2,7 +2,7 @@ import logging
from typing import List, Sequence
from facefusion.common_helper import create_float_range, create_int_range
from facefusion.typing import Angle, DownloadProviderSet, DownloadScope, ExecutionProviderSet, FaceDetectorSet, FaceLandmarkerModel, FaceMaskRegion, FaceMaskType, FaceSelectorMode, FaceSelectorOrder, Gender, JobStatus, LogLevelSet, OutputAudioEncoder, OutputVideoEncoder, OutputVideoPreset, Race, Score, TempFrameFormat, UiWorkflow, VideoMemoryStrategy
from facefusion.typing import Angle, DownloadProvider, DownloadProviderSet, DownloadScope, ExecutionProvider, ExecutionProviderSet, FaceDetectorModel, FaceDetectorSet, FaceLandmarkerModel, FaceMaskRegion, FaceMaskRegionSet, FaceMaskType, FaceOccluderModel, FaceParserModel, FaceSelectorMode, FaceSelectorOrder, Gender, JobStatus, LogLevel, LogLevelSet, OutputAudioEncoder, OutputVideoEncoder, OutputVideoPreset, Race, Score, TempFrameFormat, UiWorkflow, VideoMemoryStrategy
face_detector_set : FaceDetectorSet =\
{
@ -11,13 +11,29 @@ face_detector_set : FaceDetectorSet =\
'scrfd': [ '160x160', '320x320', '480x480', '512x512', '640x640' ],
'yoloface': [ '640x640' ]
}
face_detector_models : List[FaceDetectorModel] = list(face_detector_set.keys())
face_landmarker_models : List[FaceLandmarkerModel] = [ 'many', '2dfan4', 'peppa_wutz' ]
face_selector_modes : List[FaceSelectorMode] = [ 'many', 'one', 'reference' ]
face_selector_orders : List[FaceSelectorOrder] = [ 'left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small', 'best-worst', 'worst-best' ]
face_selector_genders : List[Gender] = ['female', 'male']
face_selector_races : List[Race] = ['white', 'black', 'latino', 'asian', 'indian', 'arabic']
face_selector_genders : List[Gender] = [ 'female', 'male' ]
face_selector_races : List[Race] = [ 'white', 'black', 'latino', 'asian', 'indian', 'arabic' ]
face_occluder_models : List[FaceOccluderModel] = [ 'xseg_1', 'xseg_2' ]
face_parser_models : List[FaceParserModel] = [ 'bisenet_resnet_18', 'bisenet_resnet_34' ]
face_mask_types : List[FaceMaskType] = [ 'box', 'occlusion', 'region' ]
face_mask_regions : List[FaceMaskRegion] = [ 'skin', 'left-eyebrow', 'right-eyebrow', 'left-eye', 'right-eye', 'glasses', 'nose', 'mouth', 'upper-lip', 'lower-lip' ]
face_mask_region_set : FaceMaskRegionSet =\
{
'skin': 1,
'left-eyebrow': 2,
'right-eyebrow': 3,
'left-eye': 4,
'right-eye': 5,
'glasses': 6,
'nose': 10,
'mouth': 11,
'upper-lip': 12,
'lower-lip': 13
}
face_mask_regions : List[FaceMaskRegion] = list(face_mask_region_set.keys())
temp_frame_formats : List[TempFrameFormat] = [ 'bmp', 'jpg', 'png' ]
output_audio_encoders : List[OutputAudioEncoder] = [ 'aac', 'libmp3lame', 'libopus', 'libvorbis' ]
output_video_encoders : List[OutputVideoEncoder] = [ 'libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc', 'h264_amf', 'hevc_amf', 'h264_qsv', 'hevc_qsv', 'h264_videotoolbox', 'hevc_videotoolbox' ]
@ -36,11 +52,21 @@ execution_provider_set : ExecutionProviderSet =\
'rocm': 'ROCMExecutionProvider',
'tensorrt': 'TensorrtExecutionProvider'
}
execution_providers : List[ExecutionProvider] = list(execution_provider_set.keys())
download_provider_set : DownloadProviderSet =\
{
'github': 'https://github.com/facefusion/facefusion-assets/releases/download/{base_name}/{file_name}',
'huggingface': 'https://huggingface.co/facefusion/{base_name}/resolve/main/{file_name}'
'github':
{
'url': 'https://github.com',
'path': '/facefusion/facefusion-assets/releases/download/{base_name}/{file_name}'
},
'huggingface':
{
'url': 'https://huggingface.co',
'path': '/facefusion/{base_name}/resolve/main/{file_name}'
}
}
download_providers : List[DownloadProvider] = list(download_provider_set.keys())
download_scopes : List[DownloadScope] = [ 'lite', 'full' ]
video_memory_strategies : List[VideoMemoryStrategy] = [ 'strict', 'moderate', 'tolerant' ]
@ -52,6 +78,7 @@ log_level_set : LogLevelSet =\
'info': logging.INFO,
'debug': logging.DEBUG
}
log_levels : List[LogLevel] = list(log_level_set.keys())
ui_workflows : List[UiWorkflow] = [ 'instant_runner', 'job_runner', 'job_manager' ]
job_statuses : List[JobStatus] = [ 'drafted', 'queued', 'completed', 'failed' ]

View File

@ -9,7 +9,7 @@ from facefusion.download import conditional_download_hashes, conditional_downloa
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import DownloadScope, Fps, InferencePool, ModelOptions, ModelSet, VisionFrame
from facefusion.vision import count_video_frame_total, detect_video_fps, get_video_frame, read_image
from facefusion.vision import detect_video_fps, get_video_frame, read_image
PROBABILITY_LIMIT = 0.80
RATE_LIMIT = 10
@ -108,10 +108,9 @@ def analyse_image(image_path : str) -> bool:
@lru_cache(maxsize = None)
def analyse_video(video_path : str, start_frame : int, end_frame : int) -> bool:
video_frame_total = count_video_frame_total(video_path)
def analyse_video(video_path : str, trim_frame_start : int, trim_frame_end : int) -> bool:
video_fps = detect_video_fps(video_path)
frame_range = range(start_frame or 0, end_frame or video_frame_total)
frame_range = range(trim_frame_start, trim_frame_end)
rate = 0.0
counter = 0

View File

@ -2,12 +2,11 @@ import itertools
import shutil
import signal
import sys
import webbrowser
from time import time
import numpy
from facefusion import api, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, logger, process_manager, state_manager, voice_extractor, wording
from facefusion import content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, logger, process_manager, state_manager, voice_extractor, wording
from facefusion.args import apply_args, collect_job_args, reduce_job_args, reduce_step_args
from facefusion.common_helper import get_first
from facefusion.content_analyser import analyse_image, analyse_video
@ -27,7 +26,7 @@ from facefusion.program_helper import validate_args
from facefusion.statistics import conditional_log_statistics
from facefusion.temp_helper import clear_temp_directory, create_temp_directory, get_temp_file_path, get_temp_frame_paths, move_temp_file
from facefusion.typing import Args, ErrorCode
from facefusion.vision import get_video_frame, pack_resolution, read_image, read_static_images, restrict_image_resolution, restrict_video_fps, restrict_video_resolution, unpack_resolution
from facefusion.vision import get_video_frame, pack_resolution, read_image, read_static_images, restrict_image_resolution, restrict_trim_frame, restrict_video_fps, restrict_video_resolution, unpack_resolution
def cli() -> None:
@ -62,10 +61,15 @@ def route(args : Args) -> None:
if not pre_check():
return conditional_exit(2)
if state_manager.get_item('command') == 'run':
if state_manager.get_item('open_browser'):
webbrowser.open('http://127.0.0.1:8000/frontend')
logger.info('http://127.0.0.1:8000/frontend', __name__)
api.run()
import facefusion.uis.core as ui
if not common_pre_check() or not processors_pre_check():
return conditional_exit(2)
for ui_layout in ui.get_ui_layouts_modules(state_manager.get_item('ui_layouts')):
if not ui_layout.pre_check():
return conditional_exit(2)
ui.init()
ui.launch()
if state_manager.get_item('command') == 'headless-run':
if not job_manager.init_jobs(state_manager.get_item('jobs_path')):
hard_exit(1)
@ -129,7 +133,7 @@ def force_download() -> ErrorCode:
face_recognizer,
voice_extractor
]
available_processors = list_directory('facefusion/processors/modules')
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
processor_modules = get_processors_modules(available_processors)
for module in common_modules + processor_modules:
@ -385,7 +389,8 @@ def process_image(start_time : float) -> ErrorCode:
def process_video(start_time : float) -> ErrorCode:
if analyse_video(state_manager.get_item('target_path'), state_manager.get_item('trim_frame_start'), state_manager.get_item('trim_frame_end')):
trim_frame_start, trim_frame_end = restrict_trim_frame(state_manager.get_item('target_path'), state_manager.get_item('trim_frame_start'), state_manager.get_item('trim_frame_end'))
if analyse_video(state_manager.get_item('target_path'), trim_frame_start, trim_frame_end):
return 3
# clear temp
logger.debug(wording.get('clearing_temp'), __name__)
@ -398,7 +403,7 @@ def process_video(start_time : float) -> ErrorCode:
temp_video_resolution = pack_resolution(restrict_video_resolution(state_manager.get_item('target_path'), unpack_resolution(state_manager.get_item('output_video_resolution'))))
temp_video_fps = restrict_video_fps(state_manager.get_item('target_path'), state_manager.get_item('output_video_fps'))
logger.info(wording.get('extracting_frames').format(resolution = temp_video_resolution, fps = temp_video_fps), __name__)
if extract_frames(state_manager.get_item('target_path'), temp_video_resolution, temp_video_fps):
if extract_frames(state_manager.get_item('target_path'), temp_video_resolution, temp_video_fps, trim_frame_start, trim_frame_end):
logger.debug(wording.get('extracting_frames_succeed'), __name__)
else:
if is_process_stopping():
@ -447,7 +452,7 @@ def process_video(start_time : float) -> ErrorCode:
logger.warn(wording.get('replacing_audio_skipped'), __name__)
move_temp_file(state_manager.get_item('target_path'), state_manager.get_item('output_path'))
else:
if restore_audio(state_manager.get_item('target_path'), state_manager.get_item('output_path'), state_manager.get_item('output_video_fps')):
if restore_audio(state_manager.get_item('target_path'), state_manager.get_item('output_path'), state_manager.get_item('output_video_fps'), trim_frame_start, trim_frame_end):
logger.debug(wording.get('restoring_audio_succeed'), __name__)
else:
if is_process_stopping():

View File

@ -1,23 +1,23 @@
import os
import shutil
import ssl
import subprocess
import urllib.request
from functools import lru_cache
from typing import List, Optional, Tuple
from urllib.parse import urlparse
from tqdm import tqdm
import facefusion.choices
from facefusion import logger, process_manager, state_manager, wording
from facefusion.choices import download_provider_set
from facefusion.common_helper import is_macos
from facefusion.filesystem import get_file_size, is_file, remove_file
from facefusion.hash_helper import validate_hash
from facefusion.typing import DownloadProviderKey, DownloadSet
from facefusion.typing import DownloadProvider, DownloadSet
if is_macos():
ssl._create_default_https_context = ssl._create_unverified_context
def open_curl(args : List[str]) -> subprocess.Popen[bytes]:
commands = [ shutil.which('curl'), '--silent', '--insecure', '--location' ]
commands.extend(args)
return subprocess.Popen(commands, stdin = subprocess.PIPE, stdout = subprocess.PIPE)
def conditional_download(download_directory_path : str, urls : List[str]) -> None:
@ -25,13 +25,15 @@ def conditional_download(download_directory_path : str, urls : List[str]) -> Non
download_file_name = os.path.basename(urlparse(url).path)
download_file_path = os.path.join(download_directory_path, download_file_name)
initial_size = get_file_size(download_file_path)
download_size = get_download_size(url)
download_size = get_static_download_size(url)
if initial_size < download_size:
with tqdm(total = download_size, initial = initial_size, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
subprocess.Popen([ shutil.which('curl'), '--create-dirs', '--silent', '--insecure', '--location', '--continue-at', '-', '--output', download_file_path, url ])
commands = [ '--create-dirs', '--continue-at', '-', '--output', download_file_path, url ]
open_curl(commands)
current_size = initial_size
progress.set_postfix(download_providers = state_manager.get_item('download_providers'), file_name = download_file_name)
while current_size < download_size:
if is_file(download_file_path):
current_size = get_file_size(download_file_path)
@ -39,13 +41,26 @@ def conditional_download(download_directory_path : str, urls : List[str]) -> Non
@lru_cache(maxsize = None)
def get_download_size(url : str) -> int:
try:
response = urllib.request.urlopen(url, timeout = 10)
content_length = response.headers.get('Content-Length')
return int(content_length)
except (OSError, TypeError, ValueError):
return 0
def get_static_download_size(url : str) -> int:
commands = [ '-I', url ]
process = open_curl(commands)
lines = reversed(process.stdout.readlines())
for line in lines:
__line__ = line.decode().lower()
if 'content-length:' in __line__:
_, content_length = __line__.split('content-length:')
return int(content_length)
return 0
@lru_cache(maxsize = None)
def ping_static_url(url : str) -> bool:
commands = [ '-I', url ]
process = open_curl(commands)
process.communicate()
return process.returncode == 0
def conditional_download_hashes(hashes : DownloadSet) -> bool:
@ -57,10 +72,12 @@ def conditional_download_hashes(hashes : DownloadSet) -> bool:
for index in hashes:
if hashes.get(index).get('path') in invalid_hash_paths:
invalid_hash_url = hashes.get(index).get('url')
download_directory_path = os.path.dirname(hashes.get(index).get('path'))
conditional_download(download_directory_path, [ invalid_hash_url ])
if invalid_hash_url:
download_directory_path = os.path.dirname(hashes.get(index).get('path'))
conditional_download(download_directory_path, [ invalid_hash_url ])
valid_hash_paths, invalid_hash_paths = validate_hash_paths(hash_paths)
for valid_hash_path in valid_hash_paths:
valid_hash_file_name, _ = os.path.splitext(os.path.basename(valid_hash_path))
logger.debug(wording.get('validating_hash_succeed').format(hash_file_name = valid_hash_file_name), __name__)
@ -82,10 +99,12 @@ def conditional_download_sources(sources : DownloadSet) -> bool:
for index in sources:
if sources.get(index).get('path') in invalid_source_paths:
invalid_source_url = sources.get(index).get('url')
download_directory_path = os.path.dirname(sources.get(index).get('path'))
conditional_download(download_directory_path, [ invalid_source_url ])
if invalid_source_url:
download_directory_path = os.path.dirname(sources.get(index).get('path'))
conditional_download(download_directory_path, [ invalid_source_url ])
valid_source_paths, invalid_source_paths = validate_source_paths(source_paths)
for valid_source_path in valid_source_paths:
valid_source_file_name, _ = os.path.splitext(os.path.basename(valid_source_path))
logger.debug(wording.get('validating_source_succeed').format(source_file_name = valid_source_file_name), __name__)
@ -128,11 +147,17 @@ def validate_source_paths(source_paths : List[str]) -> Tuple[List[str], List[str
def resolve_download_url(base_name : str, file_name : str) -> Optional[str]:
download_providers = state_manager.get_item('download_providers')
for download_provider in download_provider_set:
if download_provider in download_providers:
for download_provider in download_providers:
if ping_download_provider(download_provider):
return resolve_download_url_by_provider(download_provider, base_name, file_name)
return None
def resolve_download_url_by_provider(download_provider : DownloadProviderKey, base_name : str, file_name : str) -> Optional[str]:
return download_provider_set.get(download_provider).format(base_name = base_name, file_name = file_name)
def ping_download_provider(download_provider : DownloadProvider) -> bool:
download_provider_value = facefusion.choices.download_provider_set.get(download_provider)
return ping_static_url(download_provider_value.get('url'))
def resolve_download_url_by_provider(download_provider : DownloadProvider, base_name : str, file_name : str) -> Optional[str]:
download_provider_value = facefusion.choices.download_provider_set.get(download_provider)
return download_provider_value.get('url') + download_provider_value.get('path').format(base_name = base_name, file_name = file_name)

View File

@ -6,37 +6,38 @@ from typing import Any, List, Optional
from onnxruntime import get_available_providers, set_default_logger_severity
from facefusion.choices import execution_provider_set
from facefusion.typing import ExecutionDevice, ExecutionProviderKey, ExecutionProviderSet, ValueAndUnit
import facefusion.choices
from facefusion.typing import ExecutionDevice, ExecutionProvider, ValueAndUnit
set_default_logger_severity(3)
def has_execution_provider(execution_provider_key : ExecutionProviderKey) -> bool:
return execution_provider_key in get_execution_provider_set().keys()
def has_execution_provider(execution_provider : ExecutionProvider) -> bool:
return execution_provider in get_available_execution_providers()
def get_execution_provider_set() -> ExecutionProviderSet:
available_execution_providers = get_available_providers()
available_execution_provider_set : ExecutionProviderSet = {}
def get_available_execution_providers() -> List[ExecutionProvider]:
inference_execution_providers = get_available_providers()
available_execution_providers = []
for execution_provider_key, execution_provider_value in execution_provider_set.items():
if execution_provider_value in available_execution_providers:
available_execution_provider_set[execution_provider_key] = execution_provider_value
return available_execution_provider_set
for execution_provider, execution_provider_value in facefusion.choices.execution_provider_set.items():
if execution_provider_value in inference_execution_providers:
available_execution_providers.append(execution_provider)
return available_execution_providers
def create_execution_providers(execution_device_id : str, execution_provider_keys : List[ExecutionProviderKey]) -> List[Any]:
execution_providers : List[Any] = []
def create_inference_execution_providers(execution_device_id : str, execution_providers : List[ExecutionProvider]) -> List[Any]:
inference_execution_providers : List[Any] = []
for execution_provider_key in execution_provider_keys:
if execution_provider_key == 'cuda':
execution_providers.append((execution_provider_set.get(execution_provider_key),
for execution_provider in execution_providers:
if execution_provider == 'cuda':
inference_execution_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
{
'device_id': execution_device_id
}))
if execution_provider_key == 'tensorrt':
execution_providers.append((execution_provider_set.get(execution_provider_key),
if execution_provider == 'tensorrt':
inference_execution_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
{
'device_id': execution_device_id,
'trt_engine_cache_enable': True,
@ -45,24 +46,24 @@ def create_execution_providers(execution_device_id : str, execution_provider_key
'trt_timing_cache_path': '.caches',
'trt_builder_optimization_level': 5
}))
if execution_provider_key == 'openvino':
execution_providers.append((execution_provider_set.get(execution_provider_key),
if execution_provider == 'openvino':
inference_execution_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
{
'device_type': 'GPU' if execution_device_id == '0' else 'GPU.' + execution_device_id,
'precision': 'FP32'
}))
if execution_provider_key in [ 'directml', 'rocm' ]:
execution_providers.append((execution_provider_set.get(execution_provider_key),
if execution_provider in [ 'directml', 'rocm' ]:
inference_execution_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
{
'device_id': execution_device_id
}))
if execution_provider_key == 'coreml':
execution_providers.append(execution_provider_set.get(execution_provider_key))
if execution_provider == 'coreml':
inference_execution_providers.append(facefusion.choices.execution_provider_set.get(execution_provider))
if 'cpu' in execution_provider_keys:
execution_providers.append(execution_provider_set.get('cpu'))
if 'cpu' in execution_providers:
inference_execution_providers.append(facefusion.choices.execution_provider_set.get('cpu'))
return execution_providers
return inference_execution_providers
def run_nvidia_smi() -> subprocess.Popen[bytes]:

View File

@ -1,3 +1,4 @@
import signal
import sys
from time import sleep
@ -7,6 +8,7 @@ from facefusion.typing import ErrorCode
def hard_exit(error_code : ErrorCode) -> None:
signal.signal(signal.SIGINT, signal.SIG_IGN)
sys.exit(error_code)

View File

@ -79,13 +79,11 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
def get_inference_pool() -> InferencePool:
_, model_sources = collect_model_downloads()
model_context = __name__ + '.' + state_manager.get_item('face_detector_model')
return inference_manager.get_inference_pool(model_context, model_sources)
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
model_context = __name__ + '.' + state_manager.get_item('face_detector_model')
inference_manager.clear_inference_pool(model_context)
inference_manager.clear_inference_pool(__name__)
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
@ -96,12 +94,15 @@ def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
if state_manager.get_item('face_detector_model') in [ 'many', 'retinaface' ]:
model_hashes['retinaface'] = model_set.get('retinaface').get('hashes').get('retinaface')
model_sources['retinaface'] = model_set.get('retinaface').get('sources').get('retinaface')
if state_manager.get_item('face_detector_model') in [ 'many', 'scrfd' ]:
model_hashes['scrfd'] = model_set.get('scrfd').get('hashes').get('scrfd')
model_sources['scrfd'] = model_set.get('scrfd').get('sources').get('scrfd')
if state_manager.get_item('face_detector_model') in [ 'many', 'yoloface' ]:
model_hashes['yoloface'] = model_set.get('yoloface').get('hashes').get('yoloface')
model_sources['yoloface'] = model_set.get('yoloface').get('sources').get('yoloface')
return model_hashes, model_sources

View File

@ -80,13 +80,11 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
def get_inference_pool() -> InferencePool:
_, model_sources = collect_model_downloads()
model_context = __name__ + '.' + state_manager.get_item('face_landmarker_model')
return inference_manager.get_inference_pool(model_context, model_sources)
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
model_context = __name__ + '.' + state_manager.get_item('face_landmarker_model')
inference_manager.clear_inference_pool(model_context)
inference_manager.clear_inference_pool(__name__)
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
@ -103,9 +101,11 @@ def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]:
model_hashes['2dfan4'] = model_set.get('2dfan4').get('hashes').get('2dfan4')
model_sources['2dfan4'] = model_set.get('2dfan4').get('sources').get('2dfan4')
if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]:
model_hashes['peppa_wutz'] = model_set.get('peppa_wutz').get('hashes').get('peppa_wutz')
model_sources['peppa_wutz'] = model_set.get('peppa_wutz').get('sources').get('peppa_wutz')
return model_hashes, model_sources
@ -123,6 +123,7 @@ def detect_face_landmarks(vision_frame : VisionFrame, bounding_box : BoundingBox
if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]:
face_landmark_2dfan4, face_landmark_score_2dfan4 = detect_with_2dfan4(vision_frame, bounding_box, face_angle)
if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]:
face_landmark_peppa_wutz, face_landmark_score_peppa_wutz = detect_with_peppa_wutz(vision_frame, bounding_box, face_angle)

View File

@ -1,56 +1,83 @@
from functools import lru_cache
from typing import Dict, List, Tuple
from typing import List, Tuple
import cv2
import numpy
from cv2.typing import Size
from facefusion import inference_manager
import facefusion.choices
from facefusion import inference_manager, state_manager
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import DownloadScope, DownloadSet, FaceLandmark68, FaceMaskRegion, InferencePool, Mask, ModelSet, Padding, VisionFrame
FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\
{
'skin': 1,
'left-eyebrow': 2,
'right-eyebrow': 3,
'left-eye': 4,
'right-eye': 5,
'glasses': 6,
'nose': 10,
'mouth': 11,
'upper-lip': 12,
'lower-lip': 13
}
@lru_cache(maxsize = None)
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
return\
{
'face_occluder':
'xseg_1':
{
'hashes':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_groggy_5.hash'),
'path': resolve_relative_path('../.assets/models/xseg_groggy_5.hash')
'url': resolve_download_url('models-3.1.0', 'xseg_1.hash'),
'path': resolve_relative_path('../.assets/models/xseg_1.hash')
}
},
'sources':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_groggy_5.onnx'),
'path': resolve_relative_path('../.assets/models/xseg_groggy_5.onnx')
'url': resolve_download_url('models-3.1.0', 'xseg_1.onnx'),
'path': resolve_relative_path('../.assets/models/xseg_1.onnx')
}
},
'size': (256, 256)
},
'face_parser':
'xseg_2':
{
'hashes':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_2.hash'),
'path': resolve_relative_path('../.assets/models/xseg_2.hash')
}
},
'sources':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_2.onnx'),
'path': resolve_relative_path('../.assets/models/xseg_2.onnx')
}
},
'size': (256, 256)
},
'bisenet_resnet_18':
{
'hashes':
{
'face_parser':
{
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.hash'),
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.hash')
}
},
'sources':
{
'face_parser':
{
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.onnx'),
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.onnx')
}
},
'size': (512, 512)
},
'bisenet_resnet_34':
{
'hashes':
{
@ -83,17 +110,26 @@ def clear_inference_pool() -> None:
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
model_hashes = {}
model_sources = {}
model_set = create_static_model_set('full')
model_hashes =\
{
'face_occluder': model_set.get('face_occluder').get('hashes').get('face_occluder'),
'face_parser': model_set.get('face_parser').get('hashes').get('face_parser')
}
model_sources =\
{
'face_occluder': model_set.get('face_occluder').get('sources').get('face_occluder'),
'face_parser': model_set.get('face_parser').get('sources').get('face_parser')
}
if state_manager.get_item('face_occluder_model') == 'xseg_1':
model_hashes['xseg_1'] = model_set.get('xseg_1').get('hashes').get('face_occluder')
model_sources['xseg_1'] = model_set.get('xseg_1').get('sources').get('face_occluder')
if state_manager.get_item('face_occluder_model') == 'xseg_2':
model_hashes['xseg_2'] = model_set.get('xseg_2').get('hashes').get('face_occluder')
model_sources['xseg_2'] = model_set.get('xseg_2').get('sources').get('face_occluder')
if state_manager.get_item('face_parser_model') == 'bisenet_resnet_18':
model_hashes['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('hashes').get('face_parser')
model_sources['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('sources').get('face_parser')
if state_manager.get_item('face_parser_model') == 'bisenet_resnet_34':
model_hashes['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('hashes').get('face_parser')
model_sources['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('sources').get('face_parser')
return model_hashes, model_sources
@ -118,7 +154,8 @@ def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_p
def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
model_size = create_static_model_set('full').get('face_occluder').get('size')
face_occluder_model = state_manager.get_item('face_occluder_model')
model_size = create_static_model_set('full').get(face_occluder_model).get('size')
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255
prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3)
@ -130,7 +167,8 @@ def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
model_size = create_static_model_set('full').get('face_parser').get('size')
face_parser_model = state_manager.get_item('face_parser_model')
model_size = create_static_model_set('full').get(face_parser_model).get('size')
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
prepare_vision_frame = prepare_vision_frame[:, :, ::-1].astype(numpy.float32) / 255
prepare_vision_frame = numpy.subtract(prepare_vision_frame, numpy.array([ 0.485, 0.456, 0.406 ]).astype(numpy.float32))
@ -138,7 +176,7 @@ def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0)
prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2)
region_mask = forward_parse_face(prepare_vision_frame)
region_mask = numpy.isin(region_mask.argmax(0), [ FACE_MASK_REGIONS[region] for region in face_mask_regions ])
region_mask = numpy.isin(region_mask.argmax(0), [ facefusion.choices.face_mask_region_set.get(face_mask_region) for face_mask_region in face_mask_regions ])
region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1])
region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
return region_mask
@ -154,7 +192,8 @@ def create_mouth_mask(face_landmark_68 : FaceLandmark68) -> Mask:
def forward_occlude_face(prepare_vision_frame : VisionFrame) -> Mask:
face_occluder = get_inference_pool().get('face_occluder')
face_occluder_model = state_manager.get_item('face_occluder_model')
face_occluder = get_inference_pool().get(face_occluder_model)
with conditional_thread_semaphore():
occlusion_mask : Mask = face_occluder.run(None,
@ -166,7 +205,8 @@ def forward_occlude_face(prepare_vision_frame : VisionFrame) -> Mask:
def forward_parse_face(prepare_vision_frame : VisionFrame) -> Mask:
face_parser = get_inference_pool().get('face_parser')
face_parser_model = state_manager.get_item('face_parser_model')
face_parser = get_inference_pool().get(face_parser_model)
with conditional_thread_semaphore():
region_mask : Mask = face_parser.run(None,

View File

@ -11,7 +11,7 @@ from facefusion import logger, process_manager, state_manager, wording
from facefusion.filesystem import remove_file
from facefusion.temp_helper import get_temp_file_path, get_temp_frame_paths, get_temp_frames_pattern
from facefusion.typing import AudioBuffer, Fps, OutputVideoPreset, UpdateProgress
from facefusion.vision import count_video_frame_total, detect_video_duration, restrict_video_fps
from facefusion.vision import count_trim_frame_total, detect_video_duration, restrict_video_fps
def run_ffmpeg_with_progress(args: List[str], update_progress : UpdateProgress) -> subprocess.Popen[bytes]:
@ -22,10 +22,12 @@ def run_ffmpeg_with_progress(args: List[str], update_progress : UpdateProgress)
while process_manager.is_processing():
try:
while line := process.stdout.readline().decode():
if 'frame=' in line:
_, frame_number = line.split('frame=')
while __line__ := process.stdout.readline().decode().lower():
if 'frame=' in __line__:
_, frame_number = __line__.split('frame=')
update_progress(int(frame_number))
if log_level == 'debug':
log_debug(process)
process.wait(timeout = 0.5)
@ -73,22 +75,17 @@ def log_debug(process : subprocess.Popen[bytes]) -> None:
logger.debug(error.strip(), __name__)
def extract_frames(target_path : str, temp_video_resolution : str, temp_video_fps : Fps) -> bool:
extract_frame_total = count_video_frame_total(state_manager.get_item('target_path'))
trim_frame_start = state_manager.get_item('trim_frame_start')
trim_frame_end = state_manager.get_item('trim_frame_end')
def extract_frames(target_path : str, temp_video_resolution : str, temp_video_fps : Fps, trim_frame_start : int, trim_frame_end : int) -> bool:
extract_frame_total = count_trim_frame_total(target_path, trim_frame_start, trim_frame_end)
temp_frames_pattern = get_temp_frames_pattern(target_path, '%08d')
commands = [ '-i', target_path, '-s', str(temp_video_resolution), '-q:v', '0' ]
if isinstance(trim_frame_start, int) and isinstance(trim_frame_end, int):
commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ':end_frame=' + str(trim_frame_end) + ',fps=' + str(temp_video_fps) ])
extract_frame_total = trim_frame_end - trim_frame_start
elif isinstance(trim_frame_start, int):
commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ',fps=' + str(temp_video_fps) ])
extract_frame_total -= trim_frame_start
elif isinstance(trim_frame_end, int):
commands.extend([ '-vf', 'trim=end_frame=' + str(trim_frame_end) + ',fps=' + str(temp_video_fps) ])
extract_frame_total -= trim_frame_end
else:
commands.extend([ '-vf', 'fps=' + str(temp_video_fps) ])
commands.extend([ '-vsync', '0', temp_frames_pattern ])
@ -99,10 +96,10 @@ def extract_frames(target_path : str, temp_video_resolution : str, temp_video_fp
def merge_video(target_path : str, output_video_resolution : str, output_video_fps: Fps) -> bool:
merge_frame_total = len(get_temp_frame_paths(target_path))
output_video_encoder = state_manager.get_item('output_video_encoder')
output_video_quality = state_manager.get_item('output_video_quality')
output_video_preset = state_manager.get_item('output_video_preset')
merge_frame_total = len(get_temp_frame_paths(target_path))
temp_video_fps = restrict_video_fps(target_path, output_video_fps)
temp_file_path = get_temp_file_path(target_path)
temp_frames_pattern = get_temp_frames_pattern(target_path, '%08d')
@ -179,9 +176,7 @@ def read_audio_buffer(target_path : str, sample_rate : int, channel_total : int)
return None
def restore_audio(target_path : str, output_path : str, output_video_fps : Fps) -> bool:
trim_frame_start = state_manager.get_item('trim_frame_start')
trim_frame_end = state_manager.get_item('trim_frame_end')
def restore_audio(target_path : str, output_path : str, output_video_fps : Fps, trim_frame_start : int, trim_frame_end : int) -> bool:
output_audio_encoder = state_manager.get_item('output_audio_encoder')
temp_file_path = get_temp_file_path(target_path)
temp_video_duration = detect_video_duration(temp_file_path)

View File

@ -7,6 +7,7 @@ from typing import List, Optional
import filetype
from facefusion.common_helper import is_windows
from facefusion.typing import File
if is_windows():
import ctypes
@ -126,11 +127,23 @@ def create_directory(directory_path : str) -> bool:
return False
def list_directory(directory_path : str) -> Optional[List[str]]:
def list_directory(directory_path : str) -> Optional[List[File]]:
if is_directory(directory_path):
file_paths = os.listdir(directory_path)
file_paths = [ Path(file_path).stem for file_path in file_paths if not Path(file_path).stem.startswith(('.', '__')) ]
return sorted(file_paths)
file_paths = sorted(os.listdir(directory_path))
files: List[File] = []
for file_path in file_paths:
file_name, file_extension = os.path.splitext(file_path)
if not file_name.startswith(('.', '__')):
files.append(
{
'name': file_name,
'extension': file_extension,
'path': os.path.join(directory_path, file_path)
})
return files
return None

View File

@ -5,9 +5,9 @@ from onnxruntime import InferenceSession
from facefusion import process_manager, state_manager
from facefusion.app_context import detect_app_context
from facefusion.execution import create_execution_providers
from facefusion.execution import create_inference_execution_providers
from facefusion.thread_helper import thread_lock
from facefusion.typing import DownloadSet, ExecutionProviderKey, InferencePool, InferencePoolSet
from facefusion.typing import DownloadSet, ExecutionProvider, InferencePool, InferencePoolSet
INFERENCE_POOLS : InferencePoolSet =\
{
@ -35,11 +35,11 @@ def get_inference_pool(model_context : str, model_sources : DownloadSet) -> Infe
return INFERENCE_POOLS.get(app_context).get(inference_context)
def create_inference_pool(model_sources : DownloadSet, execution_device_id : str, execution_provider_keys : List[ExecutionProviderKey]) -> InferencePool:
def create_inference_pool(model_sources : DownloadSet, execution_device_id : str, execution_providers : List[ExecutionProvider]) -> InferencePool:
inference_pool : InferencePool = {}
for model_name in model_sources.keys():
inference_pool[model_name] = create_inference_session(model_sources.get(model_name).get('path'), execution_device_id, execution_provider_keys)
inference_pool[model_name] = create_inference_session(model_sources.get(model_name).get('path'), execution_device_id, execution_providers)
return inference_pool
@ -53,9 +53,9 @@ def clear_inference_pool(model_context : str) -> None:
del INFERENCE_POOLS[app_context][inference_context]
def create_inference_session(model_path : str, execution_device_id : str, execution_provider_keys : List[ExecutionProviderKey]) -> InferenceSession:
execution_providers = create_execution_providers(execution_device_id, execution_provider_keys)
return InferenceSession(model_path, providers = execution_providers)
def create_inference_session(model_path : str, execution_device_id : str, execution_providers : List[ExecutionProvider]) -> InferenceSession:
inference_execution_providers = create_inference_execution_providers(execution_device_id, execution_providers)
return InferenceSession(model_path, providers = inference_execution_providers)
def get_inference_context(model_context : str) -> str:

View File

@ -2,7 +2,7 @@ import os
from copy import copy
from typing import List, Optional
from facefusion.choices import job_statuses
import facefusion.choices
from facefusion.date_helper import get_current_date_time
from facefusion.filesystem import create_directory, is_directory, is_file, move_file, remove_directory, remove_file, resolve_file_pattern
from facefusion.jobs.job_helper import get_step_output_path
@ -16,7 +16,7 @@ def init_jobs(jobs_path : str) -> bool:
global JOBS_PATH
JOBS_PATH = jobs_path
job_status_paths = [ os.path.join(JOBS_PATH, job_status) for job_status in job_statuses ]
job_status_paths = [ os.path.join(JOBS_PATH, job_status) for job_status in facefusion.choices.job_statuses ]
for job_status_path in job_status_paths:
create_directory(job_status_path)
@ -245,7 +245,7 @@ def find_job_path(job_id : str) -> Optional[str]:
job_file_name = get_job_file_name(job_id)
if job_file_name:
for job_status in job_statuses:
for job_status in facefusion.choices.job_statuses:
job_pattern = os.path.join(JOBS_PATH, job_status, job_file_name)
job_paths = resolve_file_pattern(job_pattern)

View File

@ -1,14 +1,14 @@
from logging import Logger, basicConfig, getLogger
from typing import Tuple
from facefusion.choices import log_level_set
import facefusion.choices
from facefusion.common_helper import get_first, get_last
from facefusion.typing import LogLevel, TableContents, TableHeaders
def init(log_level : LogLevel) -> None:
basicConfig(format = '%(message)s')
get_package_logger().setLevel(log_level_set.get(log_level))
get_package_logger().setLevel(facefusion.choices.log_level_set.get(log_level))
def get_package_logger() -> Logger:

View File

@ -4,7 +4,7 @@ METADATA =\
{
'name': 'FaceFusion',
'description': 'Industry leading face manipulation platform',
'version': 'NEXT',
'version': '3.1.0',
'license': 'MIT',
'author': 'Henry Ruhs',
'url': 'https://facefusion.io'

View File

@ -1,7 +1,8 @@
from typing import List, Sequence
from facefusion.common_helper import create_float_range, create_int_range
from facefusion.processors.typing import AgeModifierModel, DeepSwapperModel, ExpressionRestorerModel, FaceDebuggerItem, FaceEditorModel, FaceEnhancerModel, FaceSwapperSet, FrameColorizerModel, FrameEnhancerModel, LipSyncerModel
from facefusion.filesystem import list_directory, resolve_relative_path
from facefusion.processors.typing import AgeModifierModel, DeepSwapperModel, ExpressionRestorerModel, FaceDebuggerItem, FaceEditorModel, FaceEnhancerModel, FaceSwapperModel, FaceSwapperSet, FrameColorizerModel, FrameEnhancerModel, LipSyncerModel
age_modifier_models : List[AgeModifierModel] = [ 'styleganex_age' ]
deep_swapper_models : List[DeepSwapperModel] =\
@ -19,6 +20,7 @@ deep_swapper_models : List[DeepSwapperModel] =\
'druuzil/benjamin_affleck_320',
'druuzil/benjamin_stiller_384',
'druuzil/bradley_pitt_224',
'druuzil/brie_larson_384',
'druuzil/bryan_cranston_320',
'druuzil/catherine_blanchett_352',
'druuzil/christian_bale_320',
@ -61,6 +63,7 @@ deep_swapper_models : List[DeepSwapperModel] =\
'druuzil/lili_reinhart_320',
'druuzil/mads_mikkelsen_384',
'druuzil/mary_winstead_320',
'druuzil/margaret_qualley_384',
'druuzil/melina_juergens_320',
'druuzil/michael_fassbender_320',
'druuzil/michael_fox_320',
@ -153,6 +156,15 @@ deep_swapper_models : List[DeepSwapperModel] =\
'rumateus/sophie_turner_224',
'rumateus/taylor_swift_224'
]
custom_model_files = list_directory(resolve_relative_path('../.assets/models/custom'))
if custom_model_files:
for model_file in custom_model_files:
model_id = '/'.join([ 'custom', model_file.get('name') ])
deep_swapper_models.append(model_id)
expression_restorer_models : List[ExpressionRestorerModel] = [ 'live_portrait' ]
face_debugger_items : List[FaceDebuggerItem] = [ 'bounding-box', 'face-landmark-5', 'face-landmark-5/68', 'face-landmark-68', 'face-landmark-68/5', 'face-mask', 'face-detector-score', 'face-landmarker-score', 'age', 'gender', 'race' ]
face_editor_models : List[FaceEditorModel] = [ 'live_portrait' ]
@ -170,6 +182,7 @@ face_swapper_set : FaceSwapperSet =\
'simswap_unofficial_512': [ '512x512', '768x768', '1024x1024' ],
'uniface_256': [ '256x256', '512x512', '768x768', '1024x1024' ]
}
face_swapper_models : List[FaceSwapperModel] = list(face_swapper_set.keys())
frame_colorizer_models : List[FrameColorizerModel] = [ 'ddcolor', 'ddcolor_artistic', 'deoldify', 'deoldify_artistic', 'deoldify_stable' ]
frame_colorizer_sizes : List[str] = [ '192x192', '256x256', '384x384', '512x512' ]
frame_enhancer_models : List[FrameEnhancerModel] = [ 'clear_reality_x4', 'lsdir_x4', 'nomos8k_sc_x4', 'real_esrgan_x2', 'real_esrgan_x2_fp16', 'real_esrgan_x4', 'real_esrgan_x4_fp16', 'real_esrgan_x8', 'real_esrgan_x8_fp16', 'real_hatgan_x4', 'real_web_photo_x4', 'realistic_rescaler_x4', 'remacri_x4', 'siax_x4', 'span_kendata_x4', 'swin2_sr_x4', 'ultra_sharp_x4' ]

View File

@ -5,11 +5,11 @@ from typing import List
import cv2
import numpy
import facefusion.choices
import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
from facefusion.choices import execution_provider_set
from facefusion.common_helper import create_int_metavar
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
from facefusion.execution import has_execution_provider
@ -65,13 +65,11 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
model_context = __name__ + '.' + state_manager.get_item('age_modifier_model')
return inference_manager.get_inference_pool(model_context, model_sources)
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
model_context = __name__ + '.' + state_manager.get_item('age_modifier_model')
inference_manager.clear_inference_pool(model_context)
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:
@ -163,7 +161,7 @@ def forward(crop_vision_frame : VisionFrame, extend_vision_frame : VisionFrame,
age_modifier_inputs = {}
if has_execution_provider('coreml'):
age_modifier.set_providers([ execution_provider_set.get('cpu') ])
age_modifier.set_providers([ facefusion.choices.execution_provider_set.get('cpu') ])
for age_modifier_input in age_modifier.get_inputs():
if age_modifier_input.name == 'target':

View File

@ -4,6 +4,7 @@ from typing import List, Tuple
import cv2
import numpy
from cv2.typing import Size
import facefusion.jobs.job_manager
import facefusion.jobs.job_store
@ -13,10 +14,10 @@ from facefusion.common_helper import create_int_metavar
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url_by_provider
from facefusion.face_analyser import get_many_faces, get_one_face
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask
from facefusion.face_masker import create_occlusion_mask, create_region_mask, create_static_box_mask
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension
from facefusion.filesystem import in_directory, is_image, is_video, list_directory, resolve_relative_path, same_file_extension
from facefusion.processors import choices as processors_choices
from facefusion.processors.typing import DeepSwapperInputs, DeepSwapperMorph
from facefusion.program_helper import find_argument_group
@ -32,165 +33,167 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
if download_scope == 'full':
model_config.extend(
[
('druuzil', 'adrianne_palicki_384', (384, 384)),
('druuzil', 'agnetha_falskog_224', (224, 224)),
('druuzil', 'alan_ritchson_320', (320, 320)),
('druuzil', 'alicia_vikander_320', (320, 320)),
('druuzil', 'amber_midthunder_320', (320, 320)),
('druuzil', 'andras_arato_384', (384, 384)),
('druuzil', 'andrew_tate_320', (320, 320)),
('druuzil', 'anne_hathaway_320', (320, 320)),
('druuzil', 'anya_chalotra_320', (320, 320)),
('druuzil', 'arnold_schwarzenegger_320', (320, 320)),
('druuzil', 'benjamin_affleck_320', (320, 320)),
('druuzil', 'benjamin_stiller_384', (384, 384)),
('druuzil', 'bradley_pitt_224', (224, 224)),
('druuzil', 'bryan_cranston_320', (320, 320)),
('druuzil', 'catherine_blanchett_352', (352, 352)),
('druuzil', 'christian_bale_320', (320, 320)),
('druuzil', 'christopher_hemsworth_320', (320, 320)),
('druuzil', 'christoph_waltz_384', (384, 384)),
('druuzil', 'cillian_murphy_320', (320, 320)),
('druuzil', 'cobie_smulders_256', (256, 256)),
('druuzil', 'dwayne_johnson_384', (384, 384)),
('druuzil', 'edward_norton_320', (320, 320)),
('druuzil', 'elisabeth_shue_320', (320, 320)),
('druuzil', 'elizabeth_olsen_384', (384, 384)),
('druuzil', 'elon_musk_320', (320, 320)),
('druuzil', 'emily_blunt_320', (320, 320)),
('druuzil', 'emma_stone_384', (384, 384)),
('druuzil', 'emma_watson_320', (320, 320)),
('druuzil', 'erin_moriarty_384', (384, 384)),
('druuzil', 'eva_green_320', (320, 320)),
('druuzil', 'ewan_mcgregor_320', (320, 320)),
('druuzil', 'florence_pugh_320', (320, 320)),
('druuzil', 'freya_allan_320', (320, 320)),
('druuzil', 'gary_cole_224', (224, 224)),
('druuzil', 'gigi_hadid_224', (224, 224)),
('druuzil', 'harrison_ford_384', (384, 384)),
('druuzil', 'hayden_christensen_320', (320, 320)),
('druuzil', 'heath_ledger_320', (320, 320)),
('druuzil', 'henry_cavill_448', (448, 448)),
('druuzil', 'hugh_jackman_384', (384, 384)),
('druuzil', 'idris_elba_320', (320, 320)),
('druuzil', 'jack_nicholson_320', (320, 320)),
('druuzil', 'james_mcavoy_320', (320, 320)),
('druuzil', 'james_varney_320', (320, 320)),
('druuzil', 'jason_momoa_320', (320, 320)),
('druuzil', 'jason_statham_320', (320, 320)),
('druuzil', 'jennifer_connelly_384', (384, 384)),
('druuzil', 'jimmy_donaldson_320', (320, 320)),
('druuzil', 'jordan_peterson_384', (384, 384)),
('druuzil', 'karl_urban_224', (224, 224)),
('druuzil', 'kate_beckinsale_384', (384, 384)),
('druuzil', 'laurence_fishburne_384', (384, 384)),
('druuzil', 'lili_reinhart_320', (320, 320)),
('druuzil', 'mads_mikkelsen_384', (384, 384)),
('druuzil', 'mary_winstead_320', (320, 320)),
('druuzil', 'melina_juergens_320', (320, 320)),
('druuzil', 'michael_fassbender_320', (320, 320)),
('druuzil', 'michael_fox_320', (320, 320)),
('druuzil', 'millie_bobby_brown_320', (320, 320)),
('druuzil', 'morgan_freeman_320', (320, 320)),
('druuzil', 'patrick_stewart_320', (320, 320)),
('druuzil', 'rebecca_ferguson_320', (320, 320)),
('druuzil', 'scarlett_johansson_320', (320, 320)),
('druuzil', 'seth_macfarlane_384', (384, 384)),
('druuzil', 'thomas_cruise_320', (320, 320)),
('druuzil', 'thomas_hanks_384', (384, 384)),
('edel', 'emma_roberts_224', (224, 224)),
('edel', 'ivanka_trump_224', (224, 224)),
('edel', 'lize_dzjabrailova_224', (224, 224)),
('edel', 'sidney_sweeney_224', (224, 224)),
('edel', 'winona_ryder_224', (224, 224))
('druuzil', 'adrianne_palicki_384'),
('druuzil', 'agnetha_falskog_224'),
('druuzil', 'alan_ritchson_320'),
('druuzil', 'alicia_vikander_320'),
('druuzil', 'amber_midthunder_320'),
('druuzil', 'andras_arato_384'),
('druuzil', 'andrew_tate_320'),
('druuzil', 'anne_hathaway_320'),
('druuzil', 'anya_chalotra_320'),
('druuzil', 'arnold_schwarzenegger_320'),
('druuzil', 'benjamin_affleck_320'),
('druuzil', 'benjamin_stiller_384'),
('druuzil', 'bradley_pitt_224'),
('druuzil', 'brie_larson_384'),
('druuzil', 'bryan_cranston_320'),
('druuzil', 'catherine_blanchett_352'),
('druuzil', 'christian_bale_320'),
('druuzil', 'christopher_hemsworth_320'),
('druuzil', 'christoph_waltz_384'),
('druuzil', 'cillian_murphy_320'),
('druuzil', 'cobie_smulders_256'),
('druuzil', 'dwayne_johnson_384'),
('druuzil', 'edward_norton_320'),
('druuzil', 'elisabeth_shue_320'),
('druuzil', 'elizabeth_olsen_384'),
('druuzil', 'elon_musk_320'),
('druuzil', 'emily_blunt_320'),
('druuzil', 'emma_stone_384'),
('druuzil', 'emma_watson_320'),
('druuzil', 'erin_moriarty_384'),
('druuzil', 'eva_green_320'),
('druuzil', 'ewan_mcgregor_320'),
('druuzil', 'florence_pugh_320'),
('druuzil', 'freya_allan_320'),
('druuzil', 'gary_cole_224'),
('druuzil', 'gigi_hadid_224'),
('druuzil', 'harrison_ford_384'),
('druuzil', 'hayden_christensen_320'),
('druuzil', 'heath_ledger_320'),
('druuzil', 'henry_cavill_448'),
('druuzil', 'hugh_jackman_384'),
('druuzil', 'idris_elba_320'),
('druuzil', 'jack_nicholson_320'),
('druuzil', 'james_mcavoy_320'),
('druuzil', 'james_varney_320'),
('druuzil', 'jason_momoa_320'),
('druuzil', 'jason_statham_320'),
('druuzil', 'jennifer_connelly_384'),
('druuzil', 'jimmy_donaldson_320'),
('druuzil', 'jordan_peterson_384'),
('druuzil', 'karl_urban_224'),
('druuzil', 'kate_beckinsale_384'),
('druuzil', 'laurence_fishburne_384'),
('druuzil', 'lili_reinhart_320'),
('druuzil', 'mads_mikkelsen_384'),
('druuzil', 'mary_winstead_320'),
('druuzil', 'margaret_qualley_384'),
('druuzil', 'melina_juergens_320'),
('druuzil', 'michael_fassbender_320'),
('druuzil', 'michael_fox_320'),
('druuzil', 'millie_bobby_brown_320'),
('druuzil', 'morgan_freeman_320'),
('druuzil', 'patrick_stewart_320'),
('druuzil', 'rebecca_ferguson_320'),
('druuzil', 'scarlett_johansson_320'),
('druuzil', 'seth_macfarlane_384'),
('druuzil', 'thomas_cruise_320'),
('druuzil', 'thomas_hanks_384'),
('edel', 'emma_roberts_224'),
('edel', 'ivanka_trump_224'),
('edel', 'lize_dzjabrailova_224'),
('edel', 'sidney_sweeney_224'),
('edel', 'winona_ryder_224')
])
if download_scope in [ 'lite', 'full' ]:
model_config.extend(
[
('iperov', 'alexandra_daddario_224', (224, 224)),
('iperov', 'alexei_navalny_224', (224, 224)),
('iperov', 'amber_heard_224', (224, 224)),
('iperov', 'dilraba_dilmurat_224', (224, 224)),
('iperov', 'elon_musk_224', (224, 224)),
('iperov', 'emilia_clarke_224', (224, 224)),
('iperov', 'emma_watson_224', (224, 224)),
('iperov', 'erin_moriarty_224', (224, 224)),
('iperov', 'jackie_chan_224', (224, 224)),
('iperov', 'james_carrey_224', (224, 224)),
('iperov', 'jason_statham_320', (320, 320)),
('iperov', 'keanu_reeves_320', (320, 320)),
('iperov', 'margot_robbie_224', (224, 224)),
('iperov', 'natalie_dormer_224', (224, 224)),
('iperov', 'nicolas_coppola_224', (224, 224)),
('iperov', 'robert_downey_224', (224, 224)),
('iperov', 'rowan_atkinson_224', (224, 224)),
('iperov', 'ryan_reynolds_224', (224, 224)),
('iperov', 'scarlett_johansson_224', (224, 224)),
('iperov', 'sylvester_stallone_224', (224, 224)),
('iperov', 'thomas_cruise_224', (224, 224)),
('iperov', 'thomas_holland_224', (224, 224)),
('iperov', 'vin_diesel_224', (224, 224)),
('iperov', 'vladimir_putin_224', (224, 224))
('iperov', 'alexandra_daddario_224'),
('iperov', 'alexei_navalny_224'),
('iperov', 'amber_heard_224'),
('iperov', 'dilraba_dilmurat_224'),
('iperov', 'elon_musk_224'),
('iperov', 'emilia_clarke_224'),
('iperov', 'emma_watson_224'),
('iperov', 'erin_moriarty_224'),
('iperov', 'jackie_chan_224'),
('iperov', 'james_carrey_224'),
('iperov', 'jason_statham_320'),
('iperov', 'keanu_reeves_320'),
('iperov', 'margot_robbie_224'),
('iperov', 'natalie_dormer_224'),
('iperov', 'nicolas_coppola_224'),
('iperov', 'robert_downey_224'),
('iperov', 'rowan_atkinson_224'),
('iperov', 'ryan_reynolds_224'),
('iperov', 'scarlett_johansson_224'),
('iperov', 'sylvester_stallone_224'),
('iperov', 'thomas_cruise_224'),
('iperov', 'thomas_holland_224'),
('iperov', 'vin_diesel_224'),
('iperov', 'vladimir_putin_224')
])
if download_scope == 'full':
model_config.extend(
[
('jen', 'angelica_trae_288', (288, 288)),
('jen', 'ella_freya_224', (224, 224)),
('jen', 'emma_myers_320', (320, 320)),
('jen', 'evie_pickerill_224', (224, 224)),
('jen', 'kang_hyewon_320', (320, 320)),
('jen', 'maddie_mead_224', (224, 224)),
('jen', 'nicole_turnbull_288', (288, 288)),
('mats', 'alica_schmidt_320', (320, 320)),
('mats', 'ashley_alexiss_224', (224, 224)),
('mats', 'billie_eilish_224', (224, 224)),
('mats', 'brie_larson_224', (224, 224)),
('mats', 'cara_delevingne_224', (224, 224)),
('mats', 'carolin_kebekus_224', (224, 224)),
('mats', 'chelsea_clinton_224', (224, 224)),
('mats', 'claire_boucher_224', (224, 224)),
('mats', 'corinna_kopf_224', (224, 224)),
('mats', 'florence_pugh_224', (224, 224)),
('mats', 'hillary_clinton_224', (224, 224)),
('mats', 'jenna_fischer_224', (224, 224)),
('mats', 'kim_jisoo_320', (320, 320)),
('mats', 'mica_suarez_320', (320, 320)),
('mats', 'shailene_woodley_224', (224, 224)),
('mats', 'shraddha_kapoor_320', (320, 320)),
('mats', 'yu_jimin_352', (352, 352)),
('rumateus', 'alison_brie_224', (224, 224)),
('rumateus', 'amber_heard_224', (224, 224)),
('rumateus', 'angelina_jolie_224', (224, 224)),
('rumateus', 'aubrey_plaza_224', (224, 224)),
('rumateus', 'bridget_regan_224', (224, 224)),
('rumateus', 'cobie_smulders_224', (224, 224)),
('rumateus', 'deborah_woll_224', (224, 224)),
('rumateus', 'dua_lipa_224', (224, 224)),
('rumateus', 'emma_stone_224', (224, 224)),
('rumateus', 'hailee_steinfeld_224', (224, 224)),
('rumateus', 'hilary_duff_224', (224, 224)),
('rumateus', 'jessica_alba_224', (224, 224)),
('rumateus', 'jessica_biel_224', (224, 224)),
('rumateus', 'john_cena_224', (224, 224)),
('rumateus', 'kim_kardashian_224', (224, 224)),
('rumateus', 'kristen_bell_224', (224, 224)),
('rumateus', 'lucy_liu_224', (224, 224)),
('rumateus', 'margot_robbie_224', (224, 224)),
('rumateus', 'megan_fox_224', (224, 224)),
('rumateus', 'meghan_markle_224', (224, 224)),
('rumateus', 'millie_bobby_brown_224', (224, 224)),
('rumateus', 'natalie_portman_224', (224, 224)),
('rumateus', 'nicki_minaj_224', (224, 224)),
('rumateus', 'olivia_wilde_224', (224, 224)),
('rumateus', 'shay_mitchell_224', (224, 224)),
('rumateus', 'sophie_turner_224', (224, 224)),
('rumateus', 'taylor_swift_224', (224, 224))
('jen', 'angelica_trae_288'),
('jen', 'ella_freya_224'),
('jen', 'emma_myers_320'),
('jen', 'evie_pickerill_224'),
('jen', 'kang_hyewon_320'),
('jen', 'maddie_mead_224'),
('jen', 'nicole_turnbull_288'),
('mats', 'alica_schmidt_320'),
('mats', 'ashley_alexiss_224'),
('mats', 'billie_eilish_224'),
('mats', 'brie_larson_224'),
('mats', 'cara_delevingne_224'),
('mats', 'carolin_kebekus_224'),
('mats', 'chelsea_clinton_224'),
('mats', 'claire_boucher_224'),
('mats', 'corinna_kopf_224'),
('mats', 'florence_pugh_224'),
('mats', 'hillary_clinton_224'),
('mats', 'jenna_fischer_224'),
('mats', 'kim_jisoo_320'),
('mats', 'mica_suarez_320'),
('mats', 'shailene_woodley_224'),
('mats', 'shraddha_kapoor_320'),
('mats', 'yu_jimin_352'),
('rumateus', 'alison_brie_224'),
('rumateus', 'amber_heard_224'),
('rumateus', 'angelina_jolie_224'),
('rumateus', 'aubrey_plaza_224'),
('rumateus', 'bridget_regan_224'),
('rumateus', 'cobie_smulders_224'),
('rumateus', 'deborah_woll_224'),
('rumateus', 'dua_lipa_224'),
('rumateus', 'emma_stone_224'),
('rumateus', 'hailee_steinfeld_224'),
('rumateus', 'hilary_duff_224'),
('rumateus', 'jessica_alba_224'),
('rumateus', 'jessica_biel_224'),
('rumateus', 'john_cena_224'),
('rumateus', 'kim_kardashian_224'),
('rumateus', 'kristen_bell_224'),
('rumateus', 'lucy_liu_224'),
('rumateus', 'margot_robbie_224'),
('rumateus', 'megan_fox_224'),
('rumateus', 'meghan_markle_224'),
('rumateus', 'millie_bobby_brown_224'),
('rumateus', 'natalie_portman_224'),
('rumateus', 'nicki_minaj_224'),
('rumateus', 'olivia_wilde_224'),
('rumateus', 'shay_mitchell_224'),
('rumateus', 'sophie_turner_224'),
('rumateus', 'taylor_swift_224')
])
model_set : ModelSet = {}
for model_creator, model_name, model_size in model_config:
model_id = '/'.join([ model_creator, model_name ])
for model_scope, model_name in model_config:
model_id = '/'.join([ model_scope, model_name ])
model_set[model_id] =\
{
@ -198,34 +201,50 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
{
'deep_swapper':
{
'url': resolve_download_url_by_provider('huggingface', 'deepfacelive-models-' + model_creator, model_name + '.hash'),
'path': resolve_relative_path('../.assets/models/' + model_creator + '/' + model_name + '.hash')
'url': resolve_download_url_by_provider('huggingface', 'deepfacelive-models-' + model_scope, model_name + '.hash'),
'path': resolve_relative_path('../.assets/models/' + model_scope + '/' + model_name + '.hash')
}
},
'sources':
{
'deep_swapper':
{
'url': resolve_download_url_by_provider('huggingface', 'deepfacelive-models-' + model_creator, model_name + '.dfm'),
'path': resolve_relative_path('../.assets/models/' + model_creator + '/' + model_name + '.dfm')
'url': resolve_download_url_by_provider('huggingface', 'deepfacelive-models-' + model_scope, model_name + '.dfm'),
'path': resolve_relative_path('../.assets/models/' + model_scope + '/' + model_name + '.dfm')
}
},
'template': 'dfl_whole_face',
'size': model_size
'template': 'dfl_whole_face'
}
custom_model_files = list_directory(resolve_relative_path('../.assets/models/custom'))
if custom_model_files:
for model_file in custom_model_files:
model_id = '/'.join([ 'custom', model_file.get('name') ])
model_set[model_id] =\
{
'sources':
{
'deep_swapper':
{
'path': resolve_relative_path(model_file.get('path'))
}
},
'template': 'dfl_whole_face'
}
return model_set
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
model_context = __name__ + '.' + state_manager.get_item('deep_swapper_model')
return inference_manager.get_inference_pool(model_context, model_sources)
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
model_context = __name__ + '.' + state_manager.get_item('deep_swapper_model')
inference_manager.clear_inference_pool(model_context)
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:
@ -233,6 +252,15 @@ def get_model_options() -> ModelOptions:
return create_static_model_set('full').get(deep_swapper_model)
def get_model_size() -> Size:
deep_swapper = get_inference_pool().get('deep_swapper')
deep_swapper_outputs = deep_swapper.get_outputs()
for deep_swapper_output in deep_swapper_outputs:
return deep_swapper_output.shape[1:3]
return 0, 0
def register_args(program : ArgumentParser) -> None:
group_processors = find_argument_group(program, 'processors')
if group_processors:
@ -250,7 +278,9 @@ def pre_check() -> bool:
model_hashes = get_model_options().get('hashes')
model_sources = get_model_options().get('sources')
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
if model_hashes and model_sources:
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
return True
def pre_process(mode : ProcessMode) -> bool:
@ -281,7 +311,7 @@ def post_process() -> None:
def swap_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_model_options().get('template')
model_size = get_model_options().get('size')
model_size = get_model_size()
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size)
crop_vision_frame_raw = crop_vision_frame.copy()
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), state_manager.get_item('face_mask_padding'))
@ -300,6 +330,11 @@ def swap_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFram
crop_vision_frame = normalize_crop_frame(crop_vision_frame)
crop_vision_frame = conditional_match_frame_color(crop_vision_frame_raw, crop_vision_frame)
crop_masks.append(prepare_crop_mask(crop_source_mask, crop_target_mask))
if 'region' in state_manager.get_item('face_mask_types'):
region_mask = create_region_mask(crop_vision_frame, state_manager.get_item('face_mask_regions'))
crop_masks.append(region_mask)
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
return paste_vision_frame
@ -344,7 +379,7 @@ def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
def prepare_crop_mask(crop_source_mask : Mask, crop_target_mask : Mask) -> Mask:
model_size = get_model_options().get('size')
model_size = get_model_size()
blur_size = 6.25
kernel_size = 3
crop_mask = numpy.minimum.reduce([ crop_source_mask, crop_target_mask ])

View File

@ -77,8 +77,7 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
model_context = __name__ + '.' + state_manager.get_item('expression_restorer_model')
return inference_manager.get_inference_pool(model_context, model_sources)
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:

View File

@ -106,13 +106,11 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
model_context = __name__ + '.' + state_manager.get_item('face_editor_model')
return inference_manager.get_inference_pool(model_context, model_sources)
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
model_context = __name__ + '.' + state_manager.get_item('face_editor_model')
inference_manager.clear_inference_pool(model_context)
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:

View File

@ -223,13 +223,11 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
model_context = __name__ + '.' + state_manager.get_item('face_enhancer_model')
return inference_manager.get_inference_pool(model_context, model_sources)
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
model_context = __name__ + '.' + state_manager.get_item('face_enhancer_model')
inference_manager.clear_inference_pool(model_context)
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:

View File

@ -4,11 +4,11 @@ from typing import List, Tuple
import numpy
import facefusion.choices
import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
from facefusion.choices import execution_provider_set
from facefusion.common_helper import get_first
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
from facefusion.execution import has_execution_provider
@ -337,13 +337,11 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
model_context = __name__ + '.' + state_manager.get_item('face_swapper_model')
return inference_manager.get_inference_pool(model_context, model_sources)
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
model_context = __name__ + '.' + state_manager.get_item('face_swapper_model')
inference_manager.clear_inference_pool(model_context)
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:
@ -354,7 +352,7 @@ def get_model_options() -> ModelOptions:
def register_args(program : ArgumentParser) -> None:
group_processors = find_argument_group(program, 'processors')
if group_processors:
group_processors.add_argument('--face-swapper-model', help = wording.get('help.face_swapper_model'), default = config.get_str_value('processors.face_swapper_model', 'inswapper_128_fp16'), choices = processors_choices.face_swapper_set.keys())
group_processors.add_argument('--face-swapper-model', help = wording.get('help.face_swapper_model'), default = config.get_str_value('processors.face_swapper_model', 'inswapper_128_fp16'), choices = processors_choices.face_swapper_models)
known_args, _ = program.parse_known_args()
face_swapper_pixel_boost_choices = processors_choices.face_swapper_set.get(known_args.face_swapper_model)
group_processors.add_argument('--face-swapper-pixel-boost', help = wording.get('help.face_swapper_pixel_boost'), default = config.get_str_value('processors.face_swapper_pixel_boost', get_first(face_swapper_pixel_boost_choices)), choices = face_swapper_pixel_boost_choices)
@ -449,7 +447,7 @@ def forward_swap_face(source_face : Face, crop_vision_frame : VisionFrame) -> Vi
face_swapper_inputs = {}
if has_execution_provider('coreml') and model_type in [ 'ghost', 'uniface' ]:
face_swapper.set_providers([ execution_provider_set.get('cpu') ])
face_swapper.set_providers([ facefusion.choices.execution_provider_set.get('cpu') ])
for face_swapper_input in face_swapper.get_inputs():
if face_swapper_input.name == 'source':

View File

@ -129,13 +129,11 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
model_context = __name__ + '.' + state_manager.get_item('frame_colorizer_model')
return inference_manager.get_inference_pool(model_context, model_sources)
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
model_context = __name__ + '.' + state_manager.get_item('frame_colorizer_model')
inference_manager.clear_inference_pool(model_context)
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:

View File

@ -386,13 +386,11 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
model_context = __name__ + '.' + state_manager.get_item('frame_enhancer_model')
return inference_manager.get_inference_pool(model_context, model_sources)
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
model_context = __name__ + '.' + state_manager.get_item('frame_enhancer_model')
inference_manager.clear_inference_pool(model_context)
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:

View File

@ -75,13 +75,11 @@ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
model_context = __name__ + '.' + state_manager.get_item('lip_syncer_model')
return inference_manager.get_inference_pool(model_context, model_sources)
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
model_context = __name__ + '.' + state_manager.get_item('lip_syncer_model')
inference_manager.clear_inference_pool(model_context)
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:

View File

@ -5,155 +5,7 @@ from numpy._typing import NDArray
from facefusion.typing import AppContext, AudioFrame, Face, FaceSet, VisionFrame
AgeModifierModel = Literal['styleganex_age']
DeepSwapperModel = Literal\
[
'druuzil/adrianne_palicki_384',
'druuzil/agnetha_falskog_224',
'druuzil/alan_ritchson_320',
'druuzil/alicia_vikander_320',
'druuzil/amber_midthunder_320',
'druuzil/andras_arato_384',
'druuzil/andrew_tate_320',
'druuzil/anne_hathaway_320',
'druuzil/anya_chalotra_320',
'druuzil/arnold_schwarzenegger_320',
'druuzil/benjamin_affleck_320',
'druuzil/benjamin_stiller_384',
'druuzil/bradley_pitt_224',
'druuzil/bryan_cranston_320',
'druuzil/catherine_blanchett_352',
'druuzil/christian_bale_320',
'druuzil/christopher_hemsworth_320',
'druuzil/christoph_waltz_384',
'druuzil/cillian_murphy_320',
'druuzil/cobie_smulders_256',
'druuzil/dwayne_johnson_384',
'druuzil/edward_norton_320',
'druuzil/elisabeth_shue_320',
'druuzil/elizabeth_olsen_384',
'druuzil/elon_musk_320',
'druuzil/emily_blunt_320',
'druuzil/emma_stone_384',
'druuzil/emma_watson_320',
'druuzil/erin_moriarty_384',
'druuzil/eva_green_320',
'druuzil/ewan_mcgregor_320',
'druuzil/florence_pugh_320',
'druuzil/freya_allan_320',
'druuzil/gary_cole_224',
'druuzil/gigi_hadid_224',
'druuzil/harrison_ford_384',
'druuzil/hayden_christensen_320',
'druuzil/heath_ledger_320',
'druuzil/henry_cavill_448',
'druuzil/hugh_jackman_384',
'druuzil/idris_elba_320',
'druuzil/jack_nicholson_320',
'druuzil/james_mcavoy_320',
'druuzil/james_varney_320',
'druuzil/jason_momoa_320',
'druuzil/jason_statham_320',
'druuzil/jennifer_connelly_384',
'druuzil/jimmy_donaldson_320',
'druuzil/jordan_peterson_384',
'druuzil/karl_urban_224',
'druuzil/kate_beckinsale_384',
'druuzil/laurence_fishburne_384',
'druuzil/lili_reinhart_320',
'druuzil/mads_mikkelsen_384',
'druuzil/mary_winstead_320',
'druuzil/melina_juergens_320',
'druuzil/michael_fassbender_320',
'druuzil/michael_fox_320',
'druuzil/millie_bobby_brown_320',
'druuzil/morgan_freeman_320',
'druuzil/patrick_stewart_320',
'druuzil/rebecca_ferguson_320',
'druuzil/scarlett_johansson_320',
'druuzil/seth_macfarlane_384',
'druuzil/thomas_cruise_320',
'druuzil/thomas_hanks_384',
'edel/emma_roberts_224',
'edel/ivanka_trump_224',
'edel/lize_dzjabrailova_224',
'edel/sidney_sweeney_224',
'edel/winona_ryder_224',
'iperov/alexandra_daddario_224',
'iperov/alexei_navalny_224',
'iperov/amber_heard_224',
'iperov/dilraba_dilmurat_224',
'iperov/elon_musk_224',
'iperov/emilia_clarke_224',
'iperov/emma_watson_224',
'iperov/erin_moriarty_224',
'iperov/jackie_chan_224',
'iperov/james_carrey_224',
'iperov/jason_statham_320',
'iperov/keanu_reeves_320',
'iperov/margot_robbie_224',
'iperov/natalie_dormer_224',
'iperov/nicolas_coppola_224',
'iperov/robert_downey_224',
'iperov/rowan_atkinson_224',
'iperov/ryan_reynolds_224',
'iperov/scarlett_johansson_224',
'iperov/sylvester_stallone_224',
'iperov/thomas_cruise_224',
'iperov/thomas_holland_224',
'iperov/vin_diesel_224',
'iperov/vladimir_putin_224',
'jen/angelica_trae_288',
'jen/ella_freya_224',
'jen/emma_myers_320',
'jen/evie_pickerill_224',
'jen/kang_hyewon_320',
'jen/maddie_mead_224',
'jen/nicole_turnbull_288',
'mats/alica_schmidt_320',
'mats/ashley_alexiss_224',
'mats/billie_eilish_224',
'mats/brie_larson_224',
'mats/cara_delevingne_224',
'mats/carolin_kebekus_224',
'mats/chelsea_clinton_224',
'mats/claire_boucher_224',
'mats/corinna_kopf_224',
'mats/florence_pugh_224',
'mats/hillary_clinton_224',
'mats/jenna_fischer_224',
'mats/kim_jisoo_320',
'mats/mica_suarez_320',
'mats/shailene_woodley_224',
'mats/shraddha_kapoor_320',
'mats/yu_jimin_352',
'rumateus/alison_brie_224',
'rumateus/amber_heard_224',
'rumateus/angelina_jolie_224',
'rumateus/aubrey_plaza_224',
'rumateus/bridget_regan_224',
'rumateus/cobie_smulders_224',
'rumateus/deborah_woll_224',
'rumateus/dua_lipa_224',
'rumateus/emma_stone_224',
'rumateus/hailee_steinfeld_224',
'rumateus/hilary_duff_224',
'rumateus/jessica_alba_224',
'rumateus/jessica_biel_224',
'rumateus/john_cena_224',
'rumateus/kim_kardashian_224',
'rumateus/kristen_bell_224',
'rumateus/lucy_liu_224',
'rumateus/margot_robbie_224',
'rumateus/megan_fox_224',
'rumateus/meghan_markle_224',
'rumateus/millie_bobby_brown_224',
'rumateus/natalie_portman_224',
'rumateus/nicki_minaj_224',
'rumateus/olivia_wilde_224',
'rumateus/shay_mitchell_224',
'rumateus/sophie_turner_224',
'rumateus/taylor_swift_224'
]
DeepSwapperModel = str
ExpressionRestorerModel = Literal['live_portrait']
FaceDebuggerItem = Literal['bounding-box', 'face-landmark-5', 'face-landmark-5/68', 'face-landmark-68', 'face-landmark-68/5', 'face-mask', 'face-detector-score', 'face-landmarker-score', 'age', 'gender', 'race']
FaceEditorModel = Literal['live_portrait']

View File

@ -4,7 +4,7 @@ from argparse import ArgumentParser, HelpFormatter
import facefusion.choices
from facefusion import config, metadata, state_manager, wording
from facefusion.common_helper import create_float_metavar, create_int_metavar, get_last
from facefusion.execution import get_execution_provider_set
from facefusion.execution import get_available_execution_providers
from facefusion.filesystem import list_directory
from facefusion.jobs import job_store
from facefusion.processors.core import get_processors_modules
@ -94,7 +94,7 @@ def create_output_pattern_program() -> ArgumentParser:
def create_face_detector_program() -> ArgumentParser:
program = ArgumentParser(add_help = False)
group_face_detector = program.add_argument_group('face detector')
group_face_detector.add_argument('--face-detector-model', help = wording.get('help.face_detector_model'), default = config.get_str_value('face_detector.face_detector_model', 'yoloface'), choices = list(facefusion.choices.face_detector_set.keys()))
group_face_detector.add_argument('--face-detector-model', help = wording.get('help.face_detector_model'), default = config.get_str_value('face_detector.face_detector_model', 'yoloface'), choices = facefusion.choices.face_detector_models)
known_args, _ = program.parse_known_args()
face_detector_size_choices = facefusion.choices.face_detector_set.get(known_args.face_detector_model)
group_face_detector.add_argument('--face-detector-size', help = wording.get('help.face_detector_size'), default = config.get_str_value('face_detector.face_detector_size', get_last(face_detector_size_choices)), choices = face_detector_size_choices)
@ -132,11 +132,13 @@ def create_face_selector_program() -> ArgumentParser:
def create_face_masker_program() -> ArgumentParser:
program = ArgumentParser(add_help = False)
group_face_masker = program.add_argument_group('face masker')
group_face_masker.add_argument('--face-occluder-model', help = wording.get('help.face_occluder_model'), default = config.get_str_value('face_detector.face_occluder_model', 'xseg_1'), choices = facefusion.choices.face_occluder_models)
group_face_masker.add_argument('--face-parser-model', help = wording.get('help.face_parser_model'), default = config.get_str_value('face_detector.face_parser_model', 'bisenet_resnet_34'), choices = facefusion.choices.face_parser_models)
group_face_masker.add_argument('--face-mask-types', help = wording.get('help.face_mask_types').format(choices = ', '.join(facefusion.choices.face_mask_types)), default = config.get_str_list('face_masker.face_mask_types', 'box'), choices = facefusion.choices.face_mask_types, nargs = '+', metavar = 'FACE_MASK_TYPES')
group_face_masker.add_argument('--face-mask-blur', help = wording.get('help.face_mask_blur'), type = float, default = config.get_float_value('face_masker.face_mask_blur', '0.3'), choices = facefusion.choices.face_mask_blur_range, metavar = create_float_metavar(facefusion.choices.face_mask_blur_range))
group_face_masker.add_argument('--face-mask-padding', help = wording.get('help.face_mask_padding'), type = int, default = config.get_int_list('face_masker.face_mask_padding', '0 0 0 0'), nargs = '+')
group_face_masker.add_argument('--face-mask-regions', help = wording.get('help.face_mask_regions').format(choices = ', '.join(facefusion.choices.face_mask_regions)), default = config.get_str_list('face_masker.face_mask_regions', ' '.join(facefusion.choices.face_mask_regions)), choices = facefusion.choices.face_mask_regions, nargs = '+', metavar = 'FACE_MASK_REGIONS')
job_store.register_step_keys([ 'face_mask_types', 'face_mask_blur', 'face_mask_padding', 'face_mask_regions' ])
job_store.register_step_keys([ 'face_occluder_model', 'face_parser_model', 'face_mask_types', 'face_mask_blur', 'face_mask_padding', 'face_mask_regions' ])
return program
@ -169,7 +171,7 @@ def create_output_creation_program() -> ArgumentParser:
def create_processors_program() -> ArgumentParser:
program = ArgumentParser(add_help = False)
available_processors = list_directory('facefusion/processors/modules')
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
group_processors = program.add_argument_group('processors')
group_processors.add_argument('--processors', help = wording.get('help.processors').format(choices = ', '.join(available_processors)), default = config.get_str_list('processors.processors', 'face_swapper'), nargs = '+')
job_store.register_step_keys([ 'processors' ])
@ -180,7 +182,7 @@ def create_processors_program() -> ArgumentParser:
def create_uis_program() -> ArgumentParser:
program = ArgumentParser(add_help = False)
available_ui_layouts = list_directory('facefusion/uis/layouts')
available_ui_layouts = [ file.get('name') for file in list_directory('facefusion/uis/layouts') ]
group_uis = program.add_argument_group('uis')
group_uis.add_argument('--open-browser', help = wording.get('help.open_browser'), action = 'store_true', default = config.get_bool_value('uis.open_browser'))
group_uis.add_argument('--ui-layouts', help = wording.get('help.ui_layouts').format(choices = ', '.join(available_ui_layouts)), default = config.get_str_list('uis.ui_layouts', 'default'), nargs = '+')
@ -190,9 +192,10 @@ def create_uis_program() -> ArgumentParser:
def create_execution_program() -> ArgumentParser:
program = ArgumentParser(add_help = False)
available_execution_providers = get_available_execution_providers()
group_execution = program.add_argument_group('execution')
group_execution.add_argument('--execution-device-id', help = wording.get('help.execution_device_id'), default = config.get_str_value('execution.execution_device_id', '0'))
group_execution.add_argument('--execution-providers', help = wording.get('help.execution_providers').format(choices = ', '.join(list(get_execution_provider_set().keys()))), default = config.get_str_list('execution.execution_providers', 'cpu'), choices = list(get_execution_provider_set().keys()), nargs = '+', metavar = 'EXECUTION_PROVIDERS')
group_execution.add_argument('--execution-providers', help = wording.get('help.execution_providers').format(choices = ', '.join(available_execution_providers)), default = config.get_str_list('execution.execution_providers', 'cpu'), choices = available_execution_providers, nargs = '+', metavar = 'EXECUTION_PROVIDERS')
group_execution.add_argument('--execution-thread-count', help = wording.get('help.execution_thread_count'), type = int, default = config.get_int_value('execution.execution_thread_count', '4'), choices = facefusion.choices.execution_thread_count_range, metavar = create_int_metavar(facefusion.choices.execution_thread_count_range))
group_execution.add_argument('--execution-queue-count', help = wording.get('help.execution_queue_count'), type = int, default = config.get_int_value('execution.execution_queue_count', '1'), choices = facefusion.choices.execution_queue_count_range, metavar = create_int_metavar(facefusion.choices.execution_queue_count_range))
job_store.register_job_keys([ 'execution_device_id', 'execution_providers', 'execution_thread_count', 'execution_queue_count' ])
@ -201,8 +204,9 @@ def create_execution_program() -> ArgumentParser:
def create_download_providers_program() -> ArgumentParser:
program = ArgumentParser(add_help = False)
download_providers = list(facefusion.choices.download_provider_set.keys())
group_download = program.add_argument_group('download')
group_download.add_argument('--download-providers', help = wording.get('help.download_providers').format(choices = ', '.join(list(facefusion.choices.download_provider_set.keys()))), default = config.get_str_list('download.download_providers', 'github'), choices = list(facefusion.choices.download_provider_set.keys()), nargs = '+', metavar = 'DOWNLOAD_PROVIDERS')
group_download.add_argument('--download-providers', help = wording.get('help.download_providers').format(choices = ', '.join(download_providers)), default = config.get_str_list('download.download_providers', ' '.join(facefusion.choices.download_providers)), choices = download_providers, nargs = '+', metavar = 'DOWNLOAD_PROVIDERS')
job_store.register_job_keys([ 'download_providers' ])
return program
@ -210,7 +214,7 @@ def create_download_providers_program() -> ArgumentParser:
def create_download_scope_program() -> ArgumentParser:
program = ArgumentParser(add_help = False)
group_download = program.add_argument_group('download')
group_download.add_argument('--download-scope', help = wording.get('help.download_scope'), default = config.get_str_value('download.download_scope', 'lite'), choices = list(facefusion.choices.download_scopes))
group_download.add_argument('--download-scope', help = wording.get('help.download_scope'), default = config.get_str_value('download.download_scope', 'lite'), choices = facefusion.choices.download_scopes)
job_store.register_job_keys([ 'download_scope' ])
return program
@ -226,8 +230,9 @@ def create_memory_program() -> ArgumentParser:
def create_misc_program() -> ArgumentParser:
program = ArgumentParser(add_help = False)
log_level_keys = list(facefusion.choices.log_level_set.keys())
group_misc = program.add_argument_group('misc')
group_misc.add_argument('--log-level', help = wording.get('help.log_level'), default = config.get_str_value('misc.log_level', 'info'), choices = list(facefusion.choices.log_level_set.keys()))
group_misc.add_argument('--log-level', help = wording.get('help.log_level'), default = config.get_str_value('misc.log_level', 'info'), choices = log_level_keys)
job_store.register_job_keys([ 'log_level' ])
return program

View File

@ -1,242 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Demo</title>
<style>
.preview, meter {
width: 100%;
}
meter { border-radius: 0}
img, textarea {
width: 100%;
}
input[type="range"] {
width: 100%;
margin-top: 1em;
}
</style>
</head>
<body>
<div style="display:flex">
<div class="preview">
<h1>Preview</h1>
<div class="image-container">
<img id="image" alt="Frame Image">
</div>
<input type="range" id="slider" value="0">
<p>Frame: <span id="frameValue">0</span></p>
<button id="playBtn">Play</button>
<button id="stopBtn" disabled>Stop</button>
<input type="checkbox" id="useWebSocket" /> Use WebSocket for Preview
</div>
<div>
<h1>Debug</h1>
<p>Video Memory <meter id="video_memory" min="0" max="100" value="0"></meter></p>
<p>GPU Utilization <meter id="gpu_utilization" min="0" max="100" value="0"></meter></p>
<textarea id="debug" rows="1" cols="80" readonly></textarea>
<textarea id="devices" rows="4" cols="80" readonly></textarea>
<textarea id="state" rows="30" cols="80" readonly></textarea>
<textarea id="log" rows="10" cols="80" readonly></textarea>
<textarea id="fps" rows="2" cols="80" readonly></textarea>
</div>
</div>
<script>
function createWebSocketConnection(url, debug, container) {
const socket = new WebSocket(url);
socket.onopen = () => {
debug.value = `WebSocket connection established for URL: ${url}`;
};
socket.onmessage = event => {
debug.value = `WebSocket Event: ${event.type}`;
container.value = event.data;
};
socket.onerror = error => {
debug.value = `WebSocket Error: ${error}`;
};
socket.onclose = () => {
debug.value = `WebSocket connection closed for URL: ${url} -> Reloading Page`;
setTimeout(() => location.reload(), 1000);
};
return socket;
}
devicesSocket = createWebSocketConnection('ws://127.0.0.1:8000/execution/devices', debug, devices);
createWebSocketConnection('ws://127.0.0.1:8000/state', debug, state);
devicesSocket.addEventListener('message', event => {
const data = JSON.parse(event.data)[0]
const freeMemory = data.video_memory.free.value;
const totalMemory = data.video_memory.total.value;
const usedMemory = totalMemory - freeMemory;
const usedMemoryPercentage = (usedMemory / totalMemory) * 100;
video_memory.value = usedMemoryPercentage;
gpu_utilization.value = data.utilization.gpu.value
})
</script>
<script>
const slider = document.getElementById('slider');
const image = document.getElementById('image');
const frameValue = document.getElementById('frameValue');
const playBtn = document.getElementById('playBtn');
const stopBtn = document.getElementById('stopBtn');
const logTextarea = document.getElementById('log');
const useWebSocketCheckbox = document.getElementById('useWebSocket');
let totalFrames = 0;
let currentFrame = 0;
let totalFps = 0;
let requestCount = 0;
let isPlaying = false;
let socket;
// Fetch the total frame count and set up the slider
async function fetchSliderTotal() {
try {
const start = performance.now();
const response = await fetch('http://127.0.0.1:8000/ui/preview_slider');
const end = performance.now();
logRequest('GET', 'http://127.0.0.1:8000/ui/preview_slider', start, end);
if (response.ok) {
const data = await response.json();
totalFrames = data.video_frame_total;
slider.max = totalFrames;
slider.value = 0;
frameValue.textContent = 0;
image.src = `http://127.0.0.1:8000/preview?frame_number=0`;
} else {
console.error('Failed to fetch total frame count');
}
} catch (error) {
console.error('Error fetching total frame count:', error);
}
}
// Function to log request details to the textarea
function logRequest(method, url, startTime, endTime) {
const duration = (endTime - startTime).toFixed(2);
const logMessage = `${method} ${url} | Duration: ${duration}ms\n`;
// Append to the log textarea
logTextarea.value += logMessage;
logTextarea.scrollTop = logTextarea.scrollHeight; // Auto scroll to the bottom
}
function logFps(startTime, endTime) {
const duration = (endTime - startTime).toFixed(2);
const durationInSeconds = duration / 1000; // Convert ms to seconds
const fps = (1 / durationInSeconds).toFixed(2); // FPS for this request
// Update total FPS and request count
totalFps += parseFloat(fps);
requestCount++;
// Calculate average FPS
const averageFps = (totalFps / requestCount).toFixed(2);
// Update the textarea with id 'fps' to show the average FPS
const fpsTextarea = document.getElementById('fps');
fpsTextarea.value = `Average FPS: ${averageFps}\n`;
// Optionally, you can append the current FPS to the textarea as well:
fpsTextarea.value += `Current FPS: ${fps}\n`;
}
// Function to update the image based on the slider's value or WebSocket message
function updateImage() {
const frameNumber = slider.value;
// If WebSocket is enabled, use WebSocket to fetch the image
if (useWebSocketCheckbox.checked) {
image.onload = null
if (!socket) {
socket = new WebSocket('ws://127.0.0.1:8000/preview');
}
const start = performance.now();
socket.send(JSON.stringify({ frame_number: frameNumber }));
socket.onmessage = function (event) {
const end = performance.now();
logRequest('WEBSOCKET', 'ws://127.0.0.1:8000/preview', start, end);
logFps(start, end)
// Create a Blob URL from the WebSocket message (assumed to be a Blob)
const imageUrl = URL.createObjectURL(event.data);
// Set the image source to the Blob URL
image.src = imageUrl;
frameValue.textContent = frameNumber;
// Continue if playing
if (isPlaying && currentFrame < totalFrames) {
currentFrame++;
slider.value = currentFrame;
updateImage(); // Continue to next frame
}
};
} else {
socket = null
// Use default fetch for the image
const start = performance.now();
image.src = `http://127.0.0.1:8000/preview?frame_number=${frameNumber}`;
image.onload = function () {
const end = performance.now();
logRequest('GET', image.src, start, end);
logFps(start, end)
frameValue.textContent = frameNumber;
// Continue if playing
if (isPlaying && currentFrame < totalFrames) {
currentFrame++;
slider.value = currentFrame;
updateImage(); // Continue to next frame
}
};
}
}
// Function to start the play action (without setInterval, only on image load)
function startPlay() {
playBtn.disabled = true;
stopBtn.disabled = false;
isPlaying = true;
currentFrame = parseInt(slider.value, 10);
// Start loading the first image
updateImage();
}
// Function to stop the play action
function stopPlay() {
isPlaying = false;
playBtn.disabled = false;
stopBtn.disabled = true;
if (socket) {
socket.close(); // Close WebSocket when stopping
}
}
// Event listeners for Play/Stop buttons
playBtn.addEventListener('click', startPlay);
stopBtn.addEventListener('click', stopPlay);
// Slider manual update
slider.addEventListener('change', function () {
currentFrame = slider.value;
updateImage();
});
// Fetch the total number of frames when the page loads
window.onload = fetchSliderTotal;
</script>
</body>
</html>

View File

@ -101,8 +101,11 @@ FaceLandmarkerModel = Literal['many', '2dfan4', 'peppa_wutz']
FaceDetectorSet = Dict[FaceDetectorModel, List[str]]
FaceSelectorMode = Literal['many', 'one', 'reference']
FaceSelectorOrder = Literal['left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small', 'best-worst', 'worst-best']
FaceOccluderModel = Literal['xseg_1', 'xseg_2']
FaceParserModel = Literal['bisenet_resnet_18', 'bisenet_resnet_34']
FaceMaskType = Literal['box', 'occlusion', 'region']
FaceMaskRegion = Literal['skin', 'left-eyebrow', 'right-eyebrow', 'left-eye', 'right-eye', 'glasses', 'nose', 'mouth', 'upper-lip', 'lower-lip']
FaceMaskRegionSet = Dict[FaceMaskRegion, int]
TempFrameFormat = Literal['bmp', 'jpg', 'png']
OutputAudioEncoder = Literal['aac', 'libmp3lame', 'libopus', 'libvorbis']
OutputVideoEncoder = Literal['libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc', 'h264_amf', 'hevc_amf','h264_qsv', 'hevc_qsv', 'h264_videotoolbox', 'hevc_videotoolbox']
@ -112,9 +115,9 @@ ModelOptions = Dict[str, Any]
ModelSet = Dict[str, ModelOptions]
ModelInitializer = NDArray[Any]
ExecutionProviderKey = Literal['cpu', 'coreml', 'cuda', 'directml', 'openvino', 'rocm', 'tensorrt']
ExecutionProvider = Literal['cpu', 'coreml', 'cuda', 'directml', 'openvino', 'rocm', 'tensorrt']
ExecutionProviderValue = Literal['CPUExecutionProvider', 'CoreMLExecutionProvider', 'CUDAExecutionProvider', 'DmlExecutionProvider', 'OpenVINOExecutionProvider', 'ROCMExecutionProvider', 'TensorrtExecutionProvider']
ExecutionProviderSet = Dict[ExecutionProviderKey, ExecutionProviderValue]
ExecutionProviderSet = Dict[ExecutionProvider, ExecutionProviderValue]
ValueAndUnit = TypedDict('ValueAndUnit',
{
'value' : int,
@ -155,8 +158,13 @@ ExecutionDevice = TypedDict('ExecutionDevice',
'utilization' : ExecutionDeviceUtilization
})
DownloadProviderKey = Literal['github', 'huggingface']
DownloadProviderSet = Dict[DownloadProviderKey, str]
DownloadProvider = Literal['github', 'huggingface']
DownloadProviderValue = TypedDict('DownloadProviderValue',
{
'url' : str,
'path' : str
})
DownloadProviderSet = Dict[DownloadProvider, DownloadProviderValue]
DownloadScope = Literal['lite', 'full']
Download = TypedDict('Download',
{
@ -167,6 +175,13 @@ DownloadSet = Dict[str, Download]
VideoMemoryStrategy = Literal['strict', 'moderate', 'tolerant']
File = TypedDict('File',
{
'name' : str,
'extension' : str,
'path': str
})
AppContext = Literal['cli', 'ui']
InferencePool = Dict[str, InferenceSession]
@ -224,6 +239,8 @@ StateKey = Literal\
'reference_face_position',
'reference_face_distance',
'reference_frame_number',
'face_occluder_model',
'face_parser_model',
'face_mask_types',
'face_mask_blur',
'face_mask_padding',
@ -285,6 +302,8 @@ State = TypedDict('State',
'reference_face_position' : int,
'reference_face_distance' : float,
'reference_frame_number' : int,
'face_occluder_model' : FaceOccluderModel,
'face_parser_model' : FaceParserModel,
'face_mask_types' : List[FaceMaskType],
'face_mask_blur' : float,
'face_mask_padding' : Padding,
@ -307,10 +326,10 @@ State = TypedDict('State',
'ui_layouts' : List[str],
'ui_workflow' : UiWorkflow,
'execution_device_id' : str,
'execution_providers' : List[ExecutionProviderKey],
'execution_providers' : List[ExecutionProvider],
'execution_thread_count' : int,
'execution_queue_count' : int,
'download_providers' : List[DownloadProviderKey],
'download_providers' : List[DownloadProvider],
'download_scope' : DownloadScope,
'video_memory_strategy' : VideoMemoryStrategy,
'system_memory_limit' : int,

View File

@ -65,35 +65,56 @@
min-height: unset;
}
:root:root:root:root .tabs button:hover
:root:root:root:root .tab-wrapper
{
background: unset;
padding: 0 0.625rem;
}
:root:root:root:root .tab-container
{
height: 2.5rem;
gap: 0.5em;
}
:root:root:root:root .tabitem
:root:root:root:root .tab-container button
{
padding: 0.75rem 0 0 0
background: unset;
border-bottom: 0.125rem solid;
}
:root:root:root:root .tab-container:after,
:root:root:root:root .tabs button:after
:root:root:root:root .tab-container button.selected
{
border-width: 0.125rem;
color: var(--primary-500)
}
:root:root:root:root .tab-container:after
:root:root:root:root .toast-body
{
border-color: var(--block-background-fill)
background: white;
color: var(--primary-500);
border: unset;
border-radius: unset;
}
:root:root:root:root .dark .toast-body
{
background: var(--neutral-900);
color: var(--primary-600);
}
:root:root:root:root .toast-icon,
:root:root:root:root .toast-title,
:root:root:root:root .toast-text,
:root:root:root:root .toast-close
{
color: unset;
}
:root:root:root:root .toast-body .timer
{
background: currentColor;
}
:root:root:root:root .slider_input_container > span,
:root:root:root:root .feather-upload,
:root:root:root:root .toast-wrap,
:root:root:root:root footer
{
display: none;

View File

@ -2,11 +2,11 @@ from typing import List, Optional
import gradio
import facefusion.choices
from facefusion import content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, state_manager, voice_extractor, wording
from facefusion.choices import download_provider_set
from facefusion.filesystem import list_directory
from facefusion.processors.core import get_processors_modules
from facefusion.typing import DownloadProviderKey
from facefusion.typing import DownloadProvider
DOWNLOAD_PROVIDERS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
@ -16,7 +16,7 @@ def render() -> None:
DOWNLOAD_PROVIDERS_CHECKBOX_GROUP = gradio.CheckboxGroup(
label = wording.get('uis.download_providers_checkbox_group'),
choices = list(download_provider_set.keys()),
choices = facefusion.choices.download_providers,
value = state_manager.get_item('download_providers')
)
@ -25,7 +25,7 @@ def listen() -> None:
DOWNLOAD_PROVIDERS_CHECKBOX_GROUP.change(update_download_providers, inputs = DOWNLOAD_PROVIDERS_CHECKBOX_GROUP, outputs = DOWNLOAD_PROVIDERS_CHECKBOX_GROUP)
def update_download_providers(download_providers : List[DownloadProviderKey]) -> gradio.CheckboxGroup:
def update_download_providers(download_providers : List[DownloadProvider]) -> gradio.CheckboxGroup:
common_modules =\
[
content_analyser,
@ -36,13 +36,13 @@ def update_download_providers(download_providers : List[DownloadProviderKey]) ->
face_masker,
voice_extractor
]
available_processors = list_directory('facefusion/processors/modules')
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
processor_modules = get_processors_modules(available_processors)
for module in common_modules + processor_modules:
if hasattr(module, 'create_static_model_set'):
module.create_static_model_set.cache_clear()
download_providers = download_providers or list(download_provider_set.keys())
download_providers = download_providers or facefusion.choices.download_providers
state_manager.set_item('download_providers', download_providers)
return gradio.CheckboxGroup(value = state_manager.get_item('download_providers'))

View File

@ -3,10 +3,10 @@ from typing import List, Optional
import gradio
from facefusion import content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, state_manager, voice_extractor, wording
from facefusion.execution import get_execution_provider_set
from facefusion.execution import get_available_execution_providers
from facefusion.filesystem import list_directory
from facefusion.processors.core import get_processors_modules
from facefusion.typing import ExecutionProviderKey
from facefusion.typing import ExecutionProvider
EXECUTION_PROVIDERS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
@ -16,7 +16,7 @@ def render() -> None:
EXECUTION_PROVIDERS_CHECKBOX_GROUP = gradio.CheckboxGroup(
label = wording.get('uis.execution_providers_checkbox_group'),
choices = list(get_execution_provider_set().keys()),
choices = get_available_execution_providers(),
value = state_manager.get_item('execution_providers')
)
@ -25,7 +25,7 @@ def listen() -> None:
EXECUTION_PROVIDERS_CHECKBOX_GROUP.change(update_execution_providers, inputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP, outputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP)
def update_execution_providers(execution_providers : List[ExecutionProviderKey]) -> gradio.CheckboxGroup:
def update_execution_providers(execution_providers : List[ExecutionProvider]) -> gradio.CheckboxGroup:
common_modules =\
[
content_analyser,
@ -36,13 +36,13 @@ def update_execution_providers(execution_providers : List[ExecutionProviderKey])
face_recognizer,
voice_extractor
]
available_processors = list_directory('facefusion/processors/modules')
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
processor_modules = get_processors_modules(available_processors)
for module in common_modules + processor_modules:
if hasattr(module, 'clear_inference_pool'):
module.clear_inference_pool()
execution_providers = execution_providers or list(get_execution_provider_set())
execution_providers = execution_providers or get_available_execution_providers()
state_manager.set_item('execution_providers', execution_providers)
return gradio.CheckboxGroup(value = state_manager.get_item('execution_providers'))

View File

@ -31,7 +31,7 @@ def render() -> None:
with gradio.Row():
FACE_DETECTOR_MODEL_DROPDOWN = gradio.Dropdown(
label = wording.get('uis.face_detector_model_dropdown'),
choices = list(facefusion.choices.face_detector_set.keys()),
choices = facefusion.choices.face_detector_models,
value = state_manager.get_item('face_detector_model')
)
FACE_DETECTOR_SIZE_DROPDOWN = gradio.Dropdown(**face_detector_size_dropdown_options)

View File

@ -3,11 +3,13 @@ from typing import List, Optional, Tuple
import gradio
import facefusion.choices
from facefusion import state_manager, wording
from facefusion import face_masker, state_manager, wording
from facefusion.common_helper import calc_float_step, calc_int_step
from facefusion.typing import FaceMaskRegion, FaceMaskType
from facefusion.typing import FaceMaskRegion, FaceMaskType, FaceOccluderModel, FaceParserModel
from facefusion.uis.core import register_ui_component
FACE_OCCLUDER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None
FACE_PARSER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None
FACE_MASK_TYPES_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
FACE_MASK_REGIONS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
FACE_MASK_BLUR_SLIDER : Optional[gradio.Slider] = None
@ -18,6 +20,8 @@ FACE_MASK_PADDING_LEFT_SLIDER : Optional[gradio.Slider] = None
def render() -> None:
global FACE_OCCLUDER_MODEL_DROPDOWN
global FACE_PARSER_MODEL_DROPDOWN
global FACE_MASK_TYPES_CHECKBOX_GROUP
global FACE_MASK_REGIONS_CHECKBOX_GROUP
global FACE_MASK_BLUR_SLIDER
@ -28,6 +32,17 @@ def render() -> None:
has_box_mask = 'box' in state_manager.get_item('face_mask_types')
has_region_mask = 'region' in state_manager.get_item('face_mask_types')
with gradio.Row():
FACE_OCCLUDER_MODEL_DROPDOWN = gradio.Dropdown(
label = wording.get('uis.face_occluder_model_dropdown'),
choices = facefusion.choices.face_occluder_models,
value = state_manager.get_item('face_occluder_model')
)
FACE_PARSER_MODEL_DROPDOWN = gradio.Dropdown(
label = wording.get('uis.face_parser_model_dropdown'),
choices = facefusion.choices.face_parser_models,
value = state_manager.get_item('face_parser_model')
)
FACE_MASK_TYPES_CHECKBOX_GROUP = gradio.CheckboxGroup(
label = wording.get('uis.face_mask_types_checkbox_group'),
choices = facefusion.choices.face_mask_types,
@ -82,6 +97,8 @@ def render() -> None:
value = state_manager.get_item('face_mask_padding')[3],
visible = has_box_mask
)
register_ui_component('face_occluder_model_dropdown', FACE_OCCLUDER_MODEL_DROPDOWN)
register_ui_component('face_parser_model_dropdown', FACE_PARSER_MODEL_DROPDOWN)
register_ui_component('face_mask_types_checkbox_group', FACE_MASK_TYPES_CHECKBOX_GROUP)
register_ui_component('face_mask_regions_checkbox_group', FACE_MASK_REGIONS_CHECKBOX_GROUP)
register_ui_component('face_mask_blur_slider', FACE_MASK_BLUR_SLIDER)
@ -92,6 +109,8 @@ def render() -> None:
def listen() -> None:
FACE_OCCLUDER_MODEL_DROPDOWN.change(update_face_occluder_model, inputs = FACE_OCCLUDER_MODEL_DROPDOWN)
FACE_PARSER_MODEL_DROPDOWN.change(update_face_parser_model, inputs = FACE_PARSER_MODEL_DROPDOWN)
FACE_MASK_TYPES_CHECKBOX_GROUP.change(update_face_mask_types, inputs = FACE_MASK_TYPES_CHECKBOX_GROUP, outputs = [ FACE_MASK_TYPES_CHECKBOX_GROUP, FACE_MASK_REGIONS_CHECKBOX_GROUP, FACE_MASK_BLUR_SLIDER, FACE_MASK_PADDING_TOP_SLIDER, FACE_MASK_PADDING_RIGHT_SLIDER, FACE_MASK_PADDING_BOTTOM_SLIDER, FACE_MASK_PADDING_LEFT_SLIDER ])
FACE_MASK_REGIONS_CHECKBOX_GROUP.change(update_face_mask_regions, inputs = FACE_MASK_REGIONS_CHECKBOX_GROUP, outputs = FACE_MASK_REGIONS_CHECKBOX_GROUP)
FACE_MASK_BLUR_SLIDER.release(update_face_mask_blur, inputs = FACE_MASK_BLUR_SLIDER)
@ -100,6 +119,24 @@ def listen() -> None:
face_mask_padding_slider.release(update_face_mask_padding, inputs = face_mask_padding_sliders)
def update_face_occluder_model(face_occluder_model : FaceOccluderModel) -> gradio.Dropdown:
face_masker.clear_inference_pool()
state_manager.set_item('face_occluder_model', face_occluder_model)
if face_masker.pre_check():
return gradio.Dropdown(value = state_manager.get_item('face_occluder_model'))
return gradio.Dropdown()
def update_face_parser_model(face_parser_model : FaceParserModel) -> gradio.Dropdown:
face_masker.clear_inference_pool()
state_manager.set_item('face_parser_model', face_parser_model)
if face_masker.pre_check():
return gradio.Dropdown(value = state_manager.get_item('face_parser_model'))
return gradio.Dropdown()
def update_face_mask_types(face_mask_types : List[FaceMaskType]) -> Tuple[gradio.CheckboxGroup, gradio.CheckboxGroup, gradio.Slider, gradio.Slider, gradio.Slider, gradio.Slider, gradio.Slider]:
face_mask_types = face_mask_types or facefusion.choices.face_mask_types
state_manager.set_item('face_mask_types', face_mask_types)

View File

@ -20,7 +20,7 @@ def render() -> None:
has_face_swapper = 'face_swapper' in state_manager.get_item('processors')
FACE_SWAPPER_MODEL_DROPDOWN = gradio.Dropdown(
label = wording.get('uis.face_swapper_model_dropdown'),
choices = list(processors_choices.face_swapper_set.keys()),
choices = processors_choices.face_swapper_models,
value = state_manager.get_item('face_swapper_model'),
visible = has_face_swapper
)

View File

@ -162,7 +162,9 @@ def listen() -> None:
'face_detector_model_dropdown',
'face_detector_size_dropdown',
'face_detector_angles_checkbox_group',
'face_landmarker_model_dropdown'
'face_landmarker_model_dropdown',
'face_occluder_model_dropdown',
'face_parser_model_dropdown'
]):
ui_component.change(clear_and_update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)

View File

@ -39,5 +39,5 @@ def update_processors(processors : List[str]) -> gradio.CheckboxGroup:
def sort_processors(processors : List[str]) -> List[str]:
available_processors = list_directory('facefusion/processors/modules')
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
return sorted(available_processors, key = lambda processor : processors.index(processor) if processor in processors else len(processors))

View File

@ -7,8 +7,8 @@ from typing import Optional
import gradio
from tqdm import tqdm
import facefusion.choices
from facefusion import logger, state_manager, wording
from facefusion.choices import log_level_set
from facefusion.typing import LogLevel
LOG_LEVEL_DROPDOWN : Optional[gradio.Dropdown] = None
@ -24,7 +24,7 @@ def render() -> None:
LOG_LEVEL_DROPDOWN = gradio.Dropdown(
label = wording.get('uis.log_level_dropdown'),
choices = list(log_level_set.keys()),
choices = facefusion.choices.log_levels,
value = state_manager.get_item('log_level')
)
TERMINAL_TEXTBOX = gradio.Textbox(

View File

@ -2,7 +2,7 @@ import os
import subprocess
from collections import deque
from concurrent.futures import ThreadPoolExecutor
from typing import Deque, Generator, Optional
from typing import Deque, Generator, List, Optional
import cv2
import gradio
@ -10,7 +10,7 @@ from tqdm import tqdm
from facefusion import logger, state_manager, wording
from facefusion.audio import create_empty_audio_frame
from facefusion.common_helper import is_windows
from facefusion.common_helper import get_first, is_windows
from facefusion.content_analyser import analyse_stream
from facefusion.face_analyser import get_average_face, get_many_faces
from facefusion.ffmpeg import open_ffmpeg
@ -27,14 +27,17 @@ WEBCAM_START_BUTTON : Optional[gradio.Button] = None
WEBCAM_STOP_BUTTON : Optional[gradio.Button] = None
def get_webcam_capture() -> Optional[cv2.VideoCapture]:
def get_webcam_capture(webcam_device_id : int) -> Optional[cv2.VideoCapture]:
global WEBCAM_CAPTURE
if WEBCAM_CAPTURE is None:
cv2.setLogLevel(0)
if is_windows():
webcam_capture = cv2.VideoCapture(0, cv2.CAP_DSHOW)
webcam_capture = cv2.VideoCapture(webcam_device_id, cv2.CAP_DSHOW)
else:
webcam_capture = cv2.VideoCapture(0)
webcam_capture = cv2.VideoCapture(webcam_device_id)
cv2.setLogLevel(3)
if webcam_capture and webcam_capture.isOpened():
WEBCAM_CAPTURE = webcam_capture
return WEBCAM_CAPTURE
@ -68,27 +71,35 @@ def render() -> None:
def listen() -> None:
webcam_device_id_dropdown = get_ui_component('webcam_device_id_dropdown')
webcam_mode_radio = get_ui_component('webcam_mode_radio')
webcam_resolution_dropdown = get_ui_component('webcam_resolution_dropdown')
webcam_fps_slider = get_ui_component('webcam_fps_slider')
source_image = get_ui_component('source_image')
if webcam_mode_radio and webcam_resolution_dropdown and webcam_fps_slider:
start_event = WEBCAM_START_BUTTON.click(start, inputs = [ webcam_mode_radio, webcam_resolution_dropdown, webcam_fps_slider ], outputs = WEBCAM_IMAGE)
WEBCAM_STOP_BUTTON.click(stop, cancels = start_event)
if webcam_device_id_dropdown and webcam_mode_radio and webcam_resolution_dropdown and webcam_fps_slider:
start_event = WEBCAM_START_BUTTON.click(start, inputs = [ webcam_device_id_dropdown, webcam_mode_radio, webcam_resolution_dropdown, webcam_fps_slider ], outputs = WEBCAM_IMAGE)
WEBCAM_STOP_BUTTON.click(stop, cancels = start_event, outputs = WEBCAM_IMAGE)
if source_image:
source_image.change(stop, cancels = start_event, outputs = WEBCAM_IMAGE)
def start(webcam_mode : WebcamMode, webcam_resolution : str, webcam_fps : Fps) -> Generator[VisionFrame, None, None]:
def start(webcam_device_id : int, webcam_mode : WebcamMode, webcam_resolution : str, webcam_fps : Fps) -> Generator[VisionFrame, None, None]:
state_manager.set_item('face_selector_mode', 'one')
source_image_paths = filter_image_paths(state_manager.get_item('source_paths'))
source_frames = read_static_images(source_image_paths)
source_faces = get_many_faces(source_frames)
source_face = get_average_face(source_faces)
stream = None
webcam_capture = None
if webcam_mode in [ 'udp', 'v4l2' ]:
stream = open_stream(webcam_mode, webcam_resolution, webcam_fps) #type:ignore[arg-type]
webcam_width, webcam_height = unpack_resolution(webcam_resolution)
webcam_capture = get_webcam_capture()
if isinstance(webcam_device_id, int):
webcam_capture = get_webcam_capture(webcam_device_id)
if webcam_capture and webcam_capture.isOpened():
webcam_capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG')) #type:ignore[attr-defined]
@ -159,9 +170,22 @@ def open_stream(stream_mode : StreamMode, stream_resolution : str, stream_fps :
commands.extend([ '-b:v', '2000k', '-f', 'mpegts', 'udp://localhost:27000?pkt_size=1316' ])
if stream_mode == 'v4l2':
try:
device_name = os.listdir('/sys/devices/virtual/video4linux')[0]
device_name = get_first(os.listdir('/sys/devices/virtual/video4linux'))
if device_name:
commands.extend([ '-f', 'v4l2', '/dev/' + device_name ])
except FileNotFoundError:
logger.error(wording.get('stream_not_loaded').format(stream_mode = stream_mode), __name__)
return open_ffmpeg(commands)
def get_available_webcam_ids(webcam_id_start : int, webcam_id_end : int) -> List[int]:
available_webcam_ids = []
for index in range(webcam_id_start, webcam_id_end):
webcam_capture = get_webcam_capture(index)
if webcam_capture and webcam_capture.isOpened():
available_webcam_ids.append(index)
clear_webcam_capture()
return available_webcam_ids

View File

@ -3,19 +3,29 @@ from typing import Optional
import gradio
from facefusion import wording
from facefusion.common_helper import get_first
from facefusion.uis import choices as uis_choices
from facefusion.uis.components.webcam import get_available_webcam_ids
from facefusion.uis.core import register_ui_component
WEBCAM_DEVICE_ID_DROPDOWN : Optional[gradio.Dropdown] = None
WEBCAM_MODE_RADIO : Optional[gradio.Radio] = None
WEBCAM_RESOLUTION_DROPDOWN : Optional[gradio.Dropdown] = None
WEBCAM_FPS_SLIDER : Optional[gradio.Slider] = None
def render() -> None:
global WEBCAM_DEVICE_ID_DROPDOWN
global WEBCAM_MODE_RADIO
global WEBCAM_RESOLUTION_DROPDOWN
global WEBCAM_FPS_SLIDER
available_webcam_ids = get_available_webcam_ids(0, 10) or [ 'none' ] #type:ignore[list-item]
WEBCAM_DEVICE_ID_DROPDOWN = gradio.Dropdown(
value = get_first(available_webcam_ids),
label = wording.get('uis.webcam_device_id_dropdown'),
choices = available_webcam_ids
)
WEBCAM_MODE_RADIO = gradio.Radio(
label = wording.get('uis.webcam_mode_radio'),
choices = uis_choices.webcam_modes,
@ -33,6 +43,7 @@ def render() -> None:
minimum = 1,
maximum = 60
)
register_ui_component('webcam_device_id_dropdown', WEBCAM_DEVICE_ID_DROPDOWN)
register_ui_component('webcam_mode_radio', WEBCAM_MODE_RADIO)
register_ui_component('webcam_resolution_dropdown', WEBCAM_RESOLUTION_DROPDOWN)
register_ui_component('webcam_fps_slider', WEBCAM_FPS_SLIDER)

View File

@ -74,6 +74,7 @@ def init() -> None:
os.environ['GRADIO_TEMP_DIR'] = os.path.join(state_manager.get_item('temp_path'), 'gradio')
warnings.filterwarnings('ignore', category = UserWarning, module = 'gradio')
gradio.processing_utils._check_allowed = lambda path, check_in_upload_folder: None
def launch() -> None:

View File

@ -52,6 +52,8 @@ ComponentName = Literal\
'face_selector_race_dropdown',
'face_swapper_model_dropdown',
'face_swapper_pixel_boost_dropdown',
'face_occluder_model_dropdown',
'face_parser_model_dropdown',
'frame_colorizer_blend_slider',
'frame_colorizer_model_dropdown',
'frame_colorizer_size_dropdown',
@ -71,6 +73,7 @@ ComponentName = Literal\
'target_image',
'target_video',
'ui_workflow_dropdown',
'webcam_device_id_dropdown',
'webcam_fps_slider',
'webcam_mode_radio',
'webcam_resolution_dropdown'

View File

@ -5,7 +5,7 @@ import cv2
import numpy
from cv2.typing import Size
from facefusion.choices import image_template_sizes, video_template_sizes
import facefusion.choices
from facefusion.common_helper import is_windows
from facefusion.filesystem import is_image, is_video, sanitize_path_for_windows
from facefusion.typing import Duration, Fps, Orientation, Resolution, VisionFrame
@ -64,8 +64,8 @@ def create_image_resolutions(resolution : Resolution) -> List[str]:
if resolution:
width, height = resolution
temp_resolutions.append(normalize_resolution(resolution))
for template_size in image_template_sizes:
temp_resolutions.append(normalize_resolution((width * template_size, height * template_size)))
for image_template_size in facefusion.choices.image_template_sizes:
temp_resolutions.append(normalize_resolution((width * image_template_size, height * image_template_size)))
temp_resolutions = sorted(set(temp_resolutions))
for temp_resolution in temp_resolutions:
resolutions.append(pack_resolution(temp_resolution))
@ -122,11 +122,36 @@ def restrict_video_fps(video_path : str, fps : Fps) -> Fps:
def detect_video_duration(video_path : str) -> Duration:
video_frame_total = count_video_frame_total(video_path)
video_fps = detect_video_fps(video_path)
if video_frame_total and video_fps:
return video_frame_total / video_fps
return 0
def count_trim_frame_total(video_path : str, trim_frame_start : Optional[int], trim_frame_end : Optional[int]) -> int:
trim_frame_start, trim_frame_end = restrict_trim_frame(video_path, trim_frame_start, trim_frame_end)
return trim_frame_end - trim_frame_start
def restrict_trim_frame(video_path : str, trim_frame_start : Optional[int], trim_frame_end : Optional[int]) -> Tuple[int, int]:
video_frame_total = count_video_frame_total(video_path)
if isinstance(trim_frame_start, int):
trim_frame_start = max(0, min(trim_frame_start, video_frame_total))
if isinstance(trim_frame_end, int):
trim_frame_end = max(0, min(trim_frame_end, video_frame_total))
if isinstance(trim_frame_start, int) and isinstance(trim_frame_end, int):
return trim_frame_start, trim_frame_end
if isinstance(trim_frame_start, int):
return trim_frame_start, video_frame_total
if isinstance(trim_frame_end, int):
return 0, trim_frame_end
return 0, video_frame_total
def detect_video_resolution(video_path : str) -> Optional[Resolution]:
if is_video(video_path):
if is_windows():
@ -155,11 +180,11 @@ def create_video_resolutions(resolution : Resolution) -> List[str]:
if resolution:
width, height = resolution
temp_resolutions.append(normalize_resolution(resolution))
for template_size in video_template_sizes:
for video_template_size in facefusion.choices.video_template_sizes:
if width > height:
temp_resolutions.append(normalize_resolution((template_size * width / height, template_size)))
temp_resolutions.append(normalize_resolution((video_template_size * width / height, video_template_size)))
else:
temp_resolutions.append(normalize_resolution((template_size, template_size * height / width)))
temp_resolutions.append(normalize_resolution((video_template_size, video_template_size * height / width)))
temp_resolutions = sorted(set(temp_resolutions))
for temp_resolution in temp_resolutions:
resolutions.append(pack_resolution(temp_resolution))

View File

@ -126,6 +126,8 @@ WORDING : Dict[str, Any] =\
'reference_face_distance': 'specify the similarity between the reference face and target face',
'reference_frame_number': 'specify the frame used to create the reference face',
# face masker
'face_occluder_model': 'choose the model responsible for the occlusion mask',
'face_parser_model': 'choose the model responsible for the region mask',
'face_mask_types': 'mix and match different face mask types (choices: {choices})',
'face_mask_blur': 'specify the degree of blur applied to the box mask',
'face_mask_padding': 'apply top, right, bottom and left padding to the box mask',
@ -285,6 +287,8 @@ WORDING : Dict[str, Any] =\
'face_selector_race_dropdown': 'FACE SELECTOR RACE',
'face_swapper_model_dropdown': 'FACE SWAPPER MODEL',
'face_swapper_pixel_boost_dropdown': 'FACE SWAPPER PIXEL BOOST',
'face_occluder_model_dropdown': 'FACE OCCLUDER MODEL',
'face_parser_model_dropdown': 'FACE PARSER MODEL',
'frame_colorizer_blend_slider': 'FRAME COLORIZER BLEND',
'frame_colorizer_model_dropdown': 'FRAME COLORIZER MODEL',
'frame_colorizer_size_dropdown': 'FRAME COLORIZER SIZE',
@ -326,6 +330,7 @@ WORDING : Dict[str, Any] =\
'video_memory_strategy_dropdown': 'VIDEO MEMORY STRATEGY',
'webcam_fps_slider': 'WEBCAM FPS',
'webcam_image': 'WEBCAM',
'webcam_device_id_dropdown': 'WEBCAM DEVICE ID',
'webcam_mode_radio': 'WEBCAM MODE',
'webcam_resolution_dropdown': 'WEBCAM RESOLUTION'
}

View File

@ -1,9 +1,10 @@
filetype==1.2.0
litestar==2.13.0
numpy==2.1.3
gradio==5.9.1
gradio-rangeslider==0.0.8
numpy==2.2.0
onnx==1.17.0
onnxruntime==1.20.1
opencv-python==4.10.0.84
psutil==6.1.0
psutil==6.1.1
tqdm==4.67.1
scipy==1.14.1

View File

@ -17,8 +17,8 @@ def before_all() -> None:
def test_get_audio_frame() -> None:
assert get_audio_frame(get_test_example_file('source.mp3'), 25) is not None
assert get_audio_frame(get_test_example_file('source.wav'), 25) is not None
assert hasattr(get_audio_frame(get_test_example_file('source.mp3'), 25), '__array_interface__')
assert hasattr(get_audio_frame(get_test_example_file('source.wav'), 25), '__array_interface__')
assert get_audio_frame('invalid', 25) is None

View File

@ -1,18 +1,18 @@
import pytest
from facefusion.download import conditional_download, get_download_size
from .helper import get_test_examples_directory
from facefusion.download import get_static_download_size, ping_static_url, resolve_download_url_by_provider
@pytest.fixture(scope = 'module', autouse = True)
def before_all() -> None:
conditional_download(get_test_examples_directory(),
[
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-240p.mp4'
])
def test_get_static_download_size() -> None:
assert get_static_download_size('https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/fairface.onnx') == 85170772
assert get_static_download_size('https://huggingface.co/facefusion/models-3.0.0/resolve/main/fairface.onnx') == 85170772
assert get_static_download_size('invalid') == 0
def test_get_download_size() -> None:
assert get_download_size('https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-240p.mp4') == 191675
assert get_download_size('https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-360p.mp4') == 370732
assert get_download_size('invalid') == 0
def test_static_ping_url() -> None:
assert ping_static_url('https://github.com') is True
assert ping_static_url('https://huggingface.co') is True
assert ping_static_url('invalid') is False
def test_resolve_download_url_by_provider() -> None:
assert resolve_download_url_by_provider('github', 'models-3.0.0', 'fairface.onnx') == 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/fairface.onnx'
assert resolve_download_url_by_provider('huggingface', 'models-3.0.0', 'fairface.onnx') == 'https://huggingface.co/facefusion/models-3.0.0/resolve/main/fairface.onnx'

View File

@ -1,8 +1,4 @@
from facefusion.execution import create_execution_providers, get_execution_provider_set, has_execution_provider
def test_get_execution_provider_set() -> None:
assert 'cpu' in get_execution_provider_set().keys()
from facefusion.execution import create_inference_execution_providers, get_available_execution_providers, has_execution_provider
def test_has_execution_provider() -> None:
@ -10,7 +6,11 @@ def test_has_execution_provider() -> None:
assert has_execution_provider('openvino') is False
def test_multiple_execution_providers() -> None:
def test_get_available_execution_providers() -> None:
assert 'cpu' in get_available_execution_providers()
def test_create_inference_execution_providers() -> None:
execution_providers =\
[
('CUDAExecutionProvider',
@ -20,4 +20,4 @@ def test_multiple_execution_providers() -> None:
'CPUExecutionProvider'
]
assert create_execution_providers('1', [ 'cpu', 'cuda' ]) == execution_providers
assert create_inference_execution_providers('1', [ 'cpu', 'cuda' ]) == execution_providers

View File

@ -33,78 +33,30 @@ def before_all() -> None:
@pytest.fixture(scope = 'function', autouse = True)
def before_each() -> None:
state_manager.clear_item('trim_frame_start')
state_manager.clear_item('trim_frame_end')
prepare_test_output_directory()
def test_extract_frames() -> None:
target_paths =\
extract_set =\
[
get_test_example_file('target-240p-25fps.mp4'),
get_test_example_file('target-240p-30fps.mp4'),
get_test_example_file('target-240p-60fps.mp4')
(get_test_example_file('target-240p-25fps.mp4'), 0, 270, 324),
(get_test_example_file('target-240p-25fps.mp4'), 224, 270, 55),
(get_test_example_file('target-240p-25fps.mp4'), 124, 224, 120),
(get_test_example_file('target-240p-25fps.mp4'), 0, 100, 120),
(get_test_example_file('target-240p-30fps.mp4'), 0, 324, 324),
(get_test_example_file('target-240p-30fps.mp4'), 224, 324, 100),
(get_test_example_file('target-240p-30fps.mp4'), 124, 224, 100),
(get_test_example_file('target-240p-30fps.mp4'), 0, 100, 100),
(get_test_example_file('target-240p-60fps.mp4'), 0, 648, 324),
(get_test_example_file('target-240p-60fps.mp4'), 224, 648, 212),
(get_test_example_file('target-240p-60fps.mp4'), 124, 224, 50),
(get_test_example_file('target-240p-60fps.mp4'), 0, 100, 50)
]
for target_path in target_paths:
for target_path, trim_frame_start, trim_frame_end, frame_total in extract_set:
create_temp_directory(target_path)
assert extract_frames(target_path, '452x240', 30.0) is True
assert len(get_temp_frame_paths(target_path)) == 324
clear_temp_directory(target_path)
def test_extract_frames_with_trim_start() -> None:
state_manager.init_item('trim_frame_start', 224)
target_paths =\
[
(get_test_example_file('target-240p-25fps.mp4'), 55),
(get_test_example_file('target-240p-30fps.mp4'), 100),
(get_test_example_file('target-240p-60fps.mp4'), 212)
]
for target_path, frame_total in target_paths:
create_temp_directory(target_path)
assert extract_frames(target_path, '452x240', 30.0) is True
assert len(get_temp_frame_paths(target_path)) == frame_total
clear_temp_directory(target_path)
def test_extract_frames_with_trim_start_and_trim_end() -> None:
state_manager.init_item('trim_frame_start', 124)
state_manager.init_item('trim_frame_end', 224)
target_paths =\
[
(get_test_example_file('target-240p-25fps.mp4'), 120),
(get_test_example_file('target-240p-30fps.mp4'), 100),
(get_test_example_file('target-240p-60fps.mp4'), 50)
]
for target_path, frame_total in target_paths:
create_temp_directory(target_path)
assert extract_frames(target_path, '452x240', 30.0) is True
assert len(get_temp_frame_paths(target_path)) == frame_total
clear_temp_directory(target_path)
def test_extract_frames_with_trim_end() -> None:
state_manager.init_item('trim_frame_end', 100)
target_paths =\
[
(get_test_example_file('target-240p-25fps.mp4'), 120),
(get_test_example_file('target-240p-30fps.mp4'), 100),
(get_test_example_file('target-240p-60fps.mp4'), 50)
]
for target_path, frame_total in target_paths:
create_temp_directory(target_path)
assert extract_frames(target_path, '426x240', 30.0) is True
assert extract_frames(target_path, '452x240', 30.0, trim_frame_start, trim_frame_end) is True
assert len(get_temp_frame_paths(target_path)) == frame_total
clear_temp_directory(target_path)
@ -139,7 +91,7 @@ def test_restore_audio() -> None:
create_temp_directory(target_path)
copy_file(target_path, get_temp_file_path(target_path))
assert restore_audio(target_path, output_path, 30) is True
assert restore_audio(target_path, output_path, 30, 0, 270) is True
clear_temp_directory(target_path)

View File

@ -105,8 +105,11 @@ def test_create_directory() -> None:
def test_list_directory() -> None:
assert list_directory(get_test_examples_directory())
assert list_directory(get_test_example_file('source.jpg')) is None
files = list_directory(get_test_examples_directory())
for file in files:
assert file.get('path') == get_test_example_file(file.get('name') + file.get('extension'))
assert list_directory('invalid') is None

View File

@ -3,7 +3,7 @@ import subprocess
import pytest
from facefusion.download import conditional_download
from facefusion.vision import calc_histogram_difference, count_video_frame_total, create_image_resolutions, create_video_resolutions, detect_image_resolution, detect_video_duration, detect_video_fps, detect_video_resolution, get_video_frame, match_frame_color, normalize_resolution, pack_resolution, read_image, restrict_image_resolution, restrict_video_fps, restrict_video_resolution, unpack_resolution
from facefusion.vision import calc_histogram_difference, count_trim_frame_total, count_video_frame_total, create_image_resolutions, create_video_resolutions, detect_image_resolution, detect_video_duration, detect_video_fps, detect_video_resolution, get_video_frame, match_frame_color, normalize_resolution, pack_resolution, read_image, restrict_image_resolution, restrict_trim_frame, restrict_video_fps, restrict_video_resolution, unpack_resolution
from .helper import get_test_example_file, get_test_examples_directory
@ -50,7 +50,7 @@ def test_create_image_resolutions() -> None:
def test_get_video_frame() -> None:
assert get_video_frame(get_test_example_file('target-240p-25fps.mp4')) is not None
assert hasattr(get_video_frame(get_test_example_file('target-240p-25fps.mp4')), '__array_interface__')
assert get_video_frame('invalid') is None
@ -79,6 +79,26 @@ def test_detect_video_duration() -> None:
assert detect_video_duration('invalid') == 0
def test_count_trim_frame_total() -> None:
assert count_trim_frame_total(get_test_example_file('target-240p.mp4'), 0, 200) == 200
assert count_trim_frame_total(get_test_example_file('target-240p.mp4'), 70, 270) == 200
assert count_trim_frame_total(get_test_example_file('target-240p.mp4'), -10, None) == 270
assert count_trim_frame_total(get_test_example_file('target-240p.mp4'), None, -10) == 0
assert count_trim_frame_total(get_test_example_file('target-240p.mp4'), 280, None) == 0
assert count_trim_frame_total(get_test_example_file('target-240p.mp4'), None, 280) == 270
assert count_trim_frame_total(get_test_example_file('target-240p.mp4'), None, None) == 270
def test_restrict_trim_frame() -> None:
assert restrict_trim_frame(get_test_example_file('target-240p.mp4'), 0, 200) == (0, 200)
assert restrict_trim_frame(get_test_example_file('target-240p.mp4'), 70, 270) == (70, 270)
assert restrict_trim_frame(get_test_example_file('target-240p.mp4'), -10, None) == (0, 270)
assert restrict_trim_frame(get_test_example_file('target-240p.mp4'), None, -10) == (0, 0)
assert restrict_trim_frame(get_test_example_file('target-240p.mp4'), 280, None) == (270, 270)
assert restrict_trim_frame(get_test_example_file('target-240p.mp4'), None, 280) == (0, 270)
assert restrict_trim_frame(get_test_example_file('target-240p.mp4'), None, None) == (0, 270)
def test_detect_video_resolution() -> None:
assert detect_video_resolution(get_test_example_file('target-240p.mp4')) == (426, 226)
assert detect_video_resolution(get_test_example_file('target-240p-90deg.mp4')) == (226, 426)