fscan/Core/ICMP.go
ZacharyZcR 095437ad1a feat: 实施内存分配优化提升扫描性能
主要优化:
• 创建字符串构建器池,字符串连接性能提升18倍,内存减少99.8%
• 实施切片和Map对象池复用机制,减少频繁内存分配
• 优化SSH凭证生成,预分配切片容量减少58.6%内存使用
• 改进端口扫描和ICMP模块的Map容量预估机制
• 保持100%向后API兼容性

性能改进:
- 字符串操作: 8154ns→447ns (18x提升)
- 内存分配减少: 99.8% (8.3GB→16MB)
- SSH凭证生成: 内存减少58.6%
- 对象池复用率: 100%

新增文件:
+ common/utils/stringbuilder.go - 字符串构建器池
+ common/utils/slicepool.go - 切片对象池
+ common/utils/mappool.go - Map对象池
+ common/utils/benchmark_test.go - 性能基准测试
+ Common/utils/ - 大写版本兼容目录

修改文件:
* Common/Parse.go - 使用优化的字符串连接和去重函数
* Plugins/SSH.go - 凭证生成预分配优化
* Core/ICMP.go - 网段统计Map容量预估
* Core/PortScan.go - 端口排除Map预分配

通过专业基准测试验证,显著改善大规模扫描场景的内存效率和性能表现。
2025-08-07 01:09:54 +08:00

432 lines
9.4 KiB
Go

package core
import (
"bytes"
"fmt"
"github.com/shadow1ng/fscan/common"
"github.com/shadow1ng/fscan/common/i18n"
"github.com/shadow1ng/fscan/common/output"
"golang.org/x/net/icmp"
"net"
"os/exec"
"runtime"
"strings"
"sync"
"time"
)
var (
AliveHosts []string // 存活主机列表
ExistHosts = make(map[string]struct{}) // 已发现主机记录
livewg sync.WaitGroup // 存活检测等待组
)
// CheckLive 检测主机存活状态
func CheckLive(hostslist []string, Ping bool) []string {
// 创建主机通道
chanHosts := make(chan string, len(hostslist))
// 处理存活主机
go handleAliveHosts(chanHosts, hostslist, Ping)
// 根据Ping参数选择检测方式
if Ping {
// 使用ping方式探测
RunPing(hostslist, chanHosts)
} else {
probeWithICMP(hostslist, chanHosts)
}
// 等待所有检测完成
livewg.Wait()
close(chanHosts)
// 输出存活统计信息
printAliveStats(hostslist)
return AliveHosts
}
// IsContain 检查切片中是否包含指定元素
func IsContain(items []string, item string) bool {
for _, eachItem := range items {
if eachItem == item {
return true
}
}
return false
}
func handleAliveHosts(chanHosts chan string, hostslist []string, isPing bool) {
for ip := range chanHosts {
if _, ok := ExistHosts[ip]; !ok && IsContain(hostslist, ip) {
ExistHosts[ip] = struct{}{}
AliveHosts = append(AliveHosts, ip)
// 使用Output系统保存存活主机信息
protocol := "ICMP"
if isPing {
protocol = "PING"
}
result := &output.ScanResult{
Time: time.Now(),
Type: output.TypeHost,
Target: ip,
Status: "alive",
Details: map[string]interface{}{
"protocol": protocol,
},
}
common.SaveResult(result)
// 保留原有的控制台输出
if !common.Silent {
common.LogInfo(i18n.GetText("target_alive", ip, protocol))
}
}
livewg.Done()
}
}
// probeWithICMP 使用ICMP方式探测
func probeWithICMP(hostslist []string, chanHosts chan string) {
// 尝试监听本地ICMP
conn, err := icmp.ListenPacket("ip4:icmp", "0.0.0.0")
if err == nil {
RunIcmp1(hostslist, conn, chanHosts)
return
}
common.LogError(i18n.GetText("icmp_listen_failed", err))
common.LogBase(i18n.GetText("trying_no_listen_icmp"))
// 尝试无监听ICMP探测
conn2, err := net.DialTimeout("ip4:icmp", "127.0.0.1", 3*time.Second)
if err == nil {
defer conn2.Close()
RunIcmp2(hostslist, chanHosts)
return
}
common.LogBase(i18n.GetText("icmp_connect_failed", err))
common.LogBase(i18n.GetText("insufficient_privileges"))
common.LogBase(i18n.GetText("switching_to_ping"))
// 降级使用ping探测
RunPing(hostslist, chanHosts)
}
// printAliveStats 打印存活统计信息
func printAliveStats(hostslist []string) {
// 大规模扫描时输出 /16 网段统计
if len(hostslist) > 1000 {
arrTop, arrLen := ArrayCountValueTop(AliveHosts, common.LiveTop, true)
for i := 0; i < len(arrTop); i++ {
common.LogInfo(i18n.GetText("subnet_16_alive", arrTop[i], arrLen[i]))
}
}
// 输出 /24 网段统计
if len(hostslist) > 256 {
arrTop, arrLen := ArrayCountValueTop(AliveHosts, common.LiveTop, false)
for i := 0; i < len(arrTop); i++ {
common.LogInfo(i18n.GetText("subnet_24_alive", arrTop[i], arrLen[i]))
}
}
}
// RunIcmp1 使用ICMP批量探测主机存活(监听模式)
func RunIcmp1(hostslist []string, conn *icmp.PacketConn, chanHosts chan string) {
endflag := false
// 启动监听协程
go func() {
for {
if endflag {
return
}
// 接收ICMP响应
msg := make([]byte, 100)
_, sourceIP, _ := conn.ReadFrom(msg)
if sourceIP != nil {
livewg.Add(1)
chanHosts <- sourceIP.String()
}
}
}()
// 发送ICMP请求
for _, host := range hostslist {
dst, _ := net.ResolveIPAddr("ip", host)
IcmpByte := makemsg(host)
conn.WriteTo(IcmpByte, dst)
}
// 等待响应
start := time.Now()
for {
// 所有主机都已响应则退出
if len(AliveHosts) == len(hostslist) {
break
}
// 根据主机数量设置超时时间
since := time.Since(start)
wait := time.Second * 6
if len(hostslist) <= 256 {
wait = time.Second * 3
}
if since > wait {
break
}
}
endflag = true
conn.Close()
}
// RunIcmp2 使用ICMP并发探测主机存活(无监听模式)
func RunIcmp2(hostslist []string, chanHosts chan string) {
// 控制并发数
num := 1000
if len(hostslist) < num {
num = len(hostslist)
}
var wg sync.WaitGroup
limiter := make(chan struct{}, num)
// 并发探测
for _, host := range hostslist {
wg.Add(1)
limiter <- struct{}{}
go func(host string) {
defer func() {
<-limiter
wg.Done()
}()
if icmpalive(host) {
livewg.Add(1)
chanHosts <- host
}
}(host)
}
wg.Wait()
close(limiter)
}
// icmpalive 检测主机ICMP是否存活
func icmpalive(host string) bool {
startTime := time.Now()
// 建立ICMP连接
conn, err := net.DialTimeout("ip4:icmp", host, 6*time.Second)
if err != nil {
return false
}
defer conn.Close()
// 设置超时时间
if err := conn.SetDeadline(startTime.Add(6 * time.Second)); err != nil {
return false
}
// 构造并发送ICMP请求
msg := makemsg(host)
if _, err := conn.Write(msg); err != nil {
return false
}
// 接收ICMP响应
receive := make([]byte, 60)
if _, err := conn.Read(receive); err != nil {
return false
}
return true
}
// RunPing 使用系统Ping命令并发探测主机存活
func RunPing(hostslist []string, chanHosts chan string) {
var wg sync.WaitGroup
// 限制并发数为50
limiter := make(chan struct{}, 50)
// 并发探测
for _, host := range hostslist {
wg.Add(1)
limiter <- struct{}{}
go func(host string) {
defer func() {
<-limiter
wg.Done()
}()
if ExecCommandPing(host) {
livewg.Add(1)
chanHosts <- host
}
}(host)
}
wg.Wait()
}
// ExecCommandPing 执行系统Ping命令检测主机存活
func ExecCommandPing(ip string) bool {
// 过滤黑名单字符
forbiddenChars := []string{";", "&", "|", "`", "$", "\\", "'", "%", "\"", "\n"}
for _, char := range forbiddenChars {
if strings.Contains(ip, char) {
return false
}
}
var command *exec.Cmd
// 根据操作系统选择不同的ping命令
switch runtime.GOOS {
case "windows":
command = exec.Command("cmd", "/c", "ping -n 1 -w 1 "+ip+" && echo true || echo false")
case "darwin":
command = exec.Command("/bin/bash", "-c", "ping -c 1 -W 1 "+ip+" && echo true || echo false")
default: // linux
command = exec.Command("/bin/bash", "-c", "ping -c 1 -w 1 "+ip+" && echo true || echo false")
}
// 捕获命令输出
var outinfo bytes.Buffer
command.Stdout = &outinfo
// 执行命令
if err := command.Start(); err != nil {
return false
}
if err := command.Wait(); err != nil {
return false
}
// 分析输出结果
output := outinfo.String()
return strings.Contains(output, "true") && strings.Count(output, ip) > 2
}
// makemsg 构造ICMP echo请求消息
func makemsg(host string) []byte {
msg := make([]byte, 40)
// 获取标识符
id0, id1 := genIdentifier(host)
// 设置ICMP头部
msg[0] = 8 // Type: Echo Request
msg[1] = 0 // Code: 0
msg[2] = 0 // Checksum高位(待计算)
msg[3] = 0 // Checksum低位(待计算)
msg[4], msg[5] = id0, id1 // Identifier
msg[6], msg[7] = genSequence(1) // Sequence Number
// 计算校验和
check := checkSum(msg[0:40])
msg[2] = byte(check >> 8) // 设置校验和高位
msg[3] = byte(check & 255) // 设置校验和低位
return msg
}
// checkSum 计算ICMP校验和
func checkSum(msg []byte) uint16 {
sum := 0
length := len(msg)
// 按16位累加
for i := 0; i < length-1; i += 2 {
sum += int(msg[i])*256 + int(msg[i+1])
}
// 处理奇数长度情况
if length%2 == 1 {
sum += int(msg[length-1]) * 256
}
// 将高16位加到低16位
sum = (sum >> 16) + (sum & 0xffff)
sum = sum + (sum >> 16)
// 取反得到校验和
return uint16(^sum)
}
// genSequence 生成ICMP序列号
func genSequence(v int16) (byte, byte) {
ret1 := byte(v >> 8) // 高8位
ret2 := byte(v & 255) // 低8位
return ret1, ret2
}
// genIdentifier 根据主机地址生成标识符
func genIdentifier(host string) (byte, byte) {
return host[0], host[1] // 使用主机地址前两个字节
}
// ArrayCountValueTop 统计IP地址段存活数量并返回TOP N结果
func ArrayCountValueTop(arrInit []string, length int, flag bool) (arrTop []string, arrLen []int) {
if len(arrInit) == 0 {
return
}
// 统计各网段出现次数,预分配容量
segmentCounts := make(map[string]int, len(arrInit)/4)
for _, ip := range arrInit {
segments := strings.Split(ip, ".")
if len(segments) != 4 {
continue
}
// 根据flag确定统计B段还是C段
var segment string
if flag {
segment = fmt.Sprintf("%s.%s", segments[0], segments[1]) // B段
} else {
segment = fmt.Sprintf("%s.%s.%s", segments[0], segments[1], segments[2]) // C段
}
segmentCounts[segment]++
}
// 创建副本用于排序
sortMap := make(map[string]int)
for k, v := range segmentCounts {
sortMap[k] = v
}
// 获取TOP N结果
for i := 0; i < length && len(sortMap) > 0; i++ {
maxSegment := ""
maxCount := 0
// 查找当前最大值
for segment, count := range sortMap {
if count > maxCount {
maxCount = count
maxSegment = segment
}
}
// 添加到结果集
arrTop = append(arrTop, maxSegment)
arrLen = append(arrLen, maxCount)
// 从待处理map中删除已处理项
delete(sortMap, maxSegment)
}
return
}